Reeb Foliation
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Reeb foliation is a particular
foliation In mathematics (differential geometry), a foliation is an equivalence relation on an topological manifold, ''n''-manifold, the equivalence classes being connected, injective function, injectively immersed submanifolds, all of the same dimension ...
of the
3-sphere In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere, ''n''-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point. The interior o ...
, introduced by the French mathematician
Georges Reeb Georges Henri Reeb (12 November 1920 – 6 November 1993) was a French mathematician. He worked in differential topology, differential geometry, differential equations, topological dynamical systems theory and non-standard analysis. Biography Ree ...
(1920–1993). It is based on dividing the sphere into two
solid tori In mathematics, a solid torus is the topological space formed by sweeping a disk around a circle. It is homeomorphic to the Cartesian product S^1 \times D^2 of the disk and the circle, endowed with the product topology. A standard way to visual ...
, along a 2-
torus In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses inclu ...
: see
Clifford torus In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles and (in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdon Cliffo ...
. Each of the solid tori is then foliated internally, in
codimension In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals ...
1, and the dividing torus surface forms one more leaf. By Novikov's compact leaf theorem, every smooth foliation of the 3-sphere includes a compact torus leaf, bounding a solid torus foliated in the same way.


Illustrations


References

* * *


External links

* {{topology-stub Foliations