The recombination-activating genes (RAGs) encode parts of a
protein complex
A protein complex or multiprotein complex is a group of two or more associated polypeptide chains. Protein complexes are distinct from multidomain enzymes, in which multiple active site, catalytic domains are found in a single polypeptide chain.
...
that plays important roles in the rearrangement and recombination of the genes encoding
immunoglobulin
An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as pathogenic bacteria, bacteria and viruses, includin ...
and
T cell receptor
The T-cell receptor (TCR) is a protein complex, located on the surface of T cells (also called T lymphocytes). They are responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. ...
molecules. There are two recombination-activating genes
RAG1 and
RAG2, whose cellular expression is restricted to
lymphocytes
A lymphocyte is a type of white blood cell (leukocyte) in the immune system of most vertebrates. Lymphocytes include T cells (for cell-mediated and cytotoxic adaptive immunity), B cells (for humoral, antibody-driven adaptive immunity), and ...
during their developmental stages. The enzymes encoded by these genes, RAG-1 and RAG-2, are essential to the generation of mature
B cell
B cells, also known as B lymphocytes, are a type of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or inserted into the plasm ...
s and
T cell
T cells (also known as T lymphocytes) are an important part of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell ...
s, two types of lymphocyte that are crucial components of the
adaptive immune system
The adaptive immune system (AIS), also known as the acquired immune system, or specific immune system is a subsystem of the immune system that is composed of specialized cells, organs, and processes that eliminate pathogens specifically. The ac ...
.
Function
In the
vertebrate
Vertebrates () are animals with a vertebral column (backbone or spine), and a cranium, or skull. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain.
The vertebrates make up the subphylum Vertebra ...
immune system, each antibody is customized to attack one particular
antigen
In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response.
...
(foreign proteins and carbohydrates) without attacking the body itself. The human genome has at most 30,000 genes, and yet it generates millions of different antibodies, which allows it to be able to respond to invasion from millions of different antigens. The immune system generates this diversity of antibodies by shuffling, cutting and recombining a few hundred genes (the VDJ genes) to create millions of permutations, in a process called
V(D)J recombination
V(D)J recombination (variable–diversity–joining rearrangement) is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire ...
.
RAG-1 and RAG-2 are proteins at the ends of VDJ genes that separate, shuffle, and rejoin the VDJ genes. This shuffling takes place inside B cells and T cells during their maturation.
RAG enzymes work as a multi-subunit complex to induce cleavage of a single double stranded
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
(dsDNA) molecule between the
antigen
In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response.
...
receptor
Receptor may refer to:
* Sensory receptor, in physiology, any neurite structure that, on receiving environmental stimuli, produces an informative nerve impulse
*Receptor (biochemistry), in biochemistry, a protein molecule that receives and respond ...
coding segment and a flanking
recombination signal sequence (RSS). They do this in two steps. They initially introduce a ‘nick’ in the 5' (upstream) end of the RSS heptamer (a conserved region of 7 nucleotides) that is adjacent to the coding sequence, leaving behind a specific biochemical structure on this region of DNA: a 3'-
hydroxyl
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
(OH) group at the coding end and a 5'-
phosphate
Phosphates are the naturally occurring form of the element phosphorus.
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
(PO
4) group at the RSS end. The next step couples these chemical groups, binding the OH-group (on the coding end) to the PO
4-group (that is sitting between the RSS and the gene segment on the opposite strand). This produces a 5'-phosphorylated double-stranded break at the RSS and a
covalent
A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
ly closed hairpin at the coding end. The RAG proteins remain at these junctions until other enzymes (notably, TDT) repair the DNA breaks.
The RAG proteins initiate V(D)J recombination, which is essential for the maturation of pre-B and pre-T cells. Activated mature B cells also possess two other remarkable, RAG-independent phenomena of manipulating their own DNA: so-called class-switch recombination (AKA isotype switching) and somatic hypermutation (AKA affinity maturation). Current studies have indicated that RAG-1 and RAG-2 must work in a synergistic manner to activate
VDJ recombination. RAG-1 was shown to inefficiently induce recombination activity of the VDJ genes when isolated and transfected into fibroblast samples. When RAG-1 was cotransfected with RAG-2, recombination frequency increased by a 1000-fold. This finding has fostered the newly revised theory that RAG genes may not only assist in VDJ recombination, but rather, directly induce the recombinations of the VDJ genes.
Structure
As with many enzymes, RAG proteins are fairly large. For example, mouse RAG-1 contains 1040
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s and mouse RAG-2 contains 527 amino acids. The enzymatic activity of the RAG proteins is concentrated largely in a core region; Residues 384–1008 of RAG-1 and residues 1–387 of RAG-2 retain most of the DNA cleavage activity. The RAG-1 core contains three
acidic
An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen cation, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.
The first category of acids are the ...
residues (D
600, D
708, and E
962) in what is called the DDE
motif, the major active site for DNA cleavage. These residues are critical for nicking the DNA strand and for forming the DNA hairpin. Residues 384–454 of RAG-1 comprise a nonamer-binding region (NBR) that specifically binds the conserved nonamer (9
nucleotide
Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s) of the RSS and the central domain (amino acids 528–760) of RAG-1 binds specifically to the RSS heptamer. The core region of RAG-2 is predicted to form a six-bladed
beta-propeller
In structural biology, a beta-propeller (β-propeller) is a type of all-β protein architecture characterized by 4 to 8 highly symmetrical blade-shaped beta sheets arranged toroidally around a central axis. Together the beta-sheets form a funnel- ...
structure that appears less specific than RAG-1 for its target.
Cryo-electron microscopy
Cryogenic electron microscopy (cryo-EM) is a transmission electron microscopy technique applied to samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An ...
structures of the synaptic RAG complexes reveal a closed dimer conformation with generation of new intermolecular interactions between two RAG1-RAG2 monomers upon DNA binding, compared to the Apo-RAG complex which constitutes as an open conformation.
Both RAG1 molecules in the closed dimer are involved in the
cooperative binding of the 12-RSS and 23-RSS intermediates with base specific interactions in the heptamer of the signal end. The first base of the heptamer in the signal end is flipped out to avoid the clash in the active center. Each coding end of the nicked-RSS intermediate is stabilized exclusively by one RAG1-RAG2 monomer with non-specific protein-DNA interactions. The coding end is highly distorted with one base flipped out from the DNA duplex in the active center, which facilitates the hairpin formation by a potential two-metal ion catalytic mechanism. The 12-RSS and 23-RSS intermediates are highly bent and asymmetrically bound to the synaptic RAG complex with the nonamer binding domain dimer tilts towards the nonamer of the 12-RSS but away from the nonamer of the 23-RSS, which emphasizes the 12/23 rule. Two HMGB1 molecules bind at each side of 12-RSS and 23-RSS to stabilize the highly bent RSSs. These structures elaborate the molecular mechanisms for DNA recognition, catalysis and the unique synapsis underlying the 12/23 rule, provide new insights into the RAG-associated human diseases, and represent a most complete set of complexes in the catalytic pathways of any DDE family recombinases, transposases or integrases.
Evolution
Based on core sequence homology, it is believed that RAG1 evolved from a
transposase
A transposase is any of a class of enzymes capable of binding to the end of a transposon and catalysing its movement to another part of a genome, typically by a cut-and-paste mechanism or a replicative mechanism, in a process known as transpositio ...
from the ''
Transib'' superfamily. No ''Transib'' family members include an
N-terminal
The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the amin ...
sequence found in RAG1 suggesting the N-terminal of RAG1 came from a separate element. The N-terminal region of RAG1 has been found in the transposable element ''N-RAG-TP'' in the sea slug, ''
Aplysia californica'', which contains the entire RAG1 N-terminal. It is likely that the full RAG1 structure was derived from the recombination between a ''Transib'' and the ''N-RAG-TP'' transposon.
A transposon with RAG2 arranged next to RAG1 has been identified in the purple sea urchin.
Active ''Transib'' transposons with both RAG1 and RAG2 ("ProtoRAG") has been discovered in ''
B. belcheri'' (Chinese lancelet) and ''
Psectrotarsia flava'' (a moth).
The terminal inverted repeats (TIR) in lancelet ProtoRAG have a heptamer-spacer-nonamer structure similar to that of RSS, but the moth ProtoRAG lacks a nonamer. The nonamer-binding regions and the nonamer sequences of lancelet ProtoRAG and animal RAG are different enough to not recognize each other.
The structure of the lancelet protoRAG has been solved (), providing some understanding on what changes lead to the domestication of RAG genes.
Although the transposon origins of these genes are well-established, there is still no consensus on when the ancestral RAG1/2 locus became present in the vertebrate genome. Because
agnathans (a class of jawless fish) lack a core RAG1 element, it was traditionally assumed that RAG1 invaded after the agnathan/
gnathostome split 1001 to 590 million years ago (MYA). However, the core sequence of RAG1 has been identified in the
echinoderm
An echinoderm () is any animal of the phylum Echinodermata (), which includes starfish, brittle stars, sea urchins, sand dollars and sea cucumbers, as well as the sessile sea lilies or "stone lilies". While bilaterally symmetrical as ...
''
Strongylocentrotus purpuratus
''Strongylocentrotus purpuratus'' is a species of sea urchin in the family Strongylocentrotidae commonly known as the purple sea urchin. It lives along the eastern edge of the Pacific Ocean extending from Ensenada, Mexico, to British Columbi ...
'' (purple sea urchin),
the
amphioxi ''
Branchiostoma floridae'' (Florida lancelet). Sequences with homology to RAG1 have also been identified in ''Lytechinus veriegatus'' (green sea urchin), ''Patiria minata'' (sea star),
the mollusk ''Aplysia californica,'' and protostomes including oysters, mussels, ribbon worms, and the non-bilaterian
cnidarians
Cnidaria ( ) is a phylum under kingdom Animalia containing over 11,000 species of aquatic invertebrates found both in fresh water, freshwater and marine environments (predominantly the latter), including jellyfish, hydroid (zoology), hydroids, ...
.
These findings indicate that the ''Transib'' family transposon invaded multiple times in non-vertebrate species, and invaded the ancestral jawed vertebrate genome about 500 MYA.
It is hypothesized that the absence of RAG-like genes in jawless vertebrates and
urochordates
Tunicates are marine invertebrates belonging to the subphylum Tunicata ( ). This grouping is part of the Chordata, a phylum which includes all animals with dorsal nerve cords and notochords (including vertebrates). The subphylum was at one time ...
is due to horizontal gene transfer or gene loss in certain phylogenetic groups due to conventional vertical transmission.
Recent analysis has shown the RAG phylogeny to be gradual and directional, suggesting an evolutionary path that relies on vertical transmission.
This hypothesis suggests that the RAG1/2-like pair may have been present in its current form in most metazoan lineages and was lost in the jawless vertebrate and urochordate lineages.
There is no evidence that the V(D)J recombination system arose earlier than the vertebrate lineage.
It is currently hypothesized that the invasion of RAG1/2 is the most important evolutionary event in terms of shaping the gnathostome
adaptive immune system
The adaptive immune system (AIS), also known as the acquired immune system, or specific immune system is a subsystem of the immune system that is composed of specialized cells, organs, and processes that eliminate pathogens specifically. The ac ...
vs. the agnathan
variable lymphocyte receptor system.
Selective pressure
It is still unclear what forces led to the development of a RAG1/2-mediated immune system exclusively in jawed vertebrates and not in any invertebrate species that also acquired the RAG1/2-containing transposon. Current hypotheses include two whole-genome duplication events in vertebrates, which would provide the genetic raw material for the development of the adaptive immune system, and the development of endothelial tissue, greater metabolic activity, and a decreased blood volume-to-body weight ratio, all of which are more specialized in vertebrates than invertebrates and facilitate adaptive immune responses.
See also
*
Omenn syndrome
*
Severe combined immunodeficiency
References
Further reading
*
*
*
External links
* A simple explanation of recombination activating gene for the general reader.
{{DEFAULTSORT:Recombination-Activating Gene
Immune system
Lymphocytes