Real Dimension
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, complex dimension usually refers to the dimension of a
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such th ...
or a complex
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
. These are spaces in which the local neighborhoods of points (or of non-singular points in the case of a variety) are modeled on a Cartesian product of the form \mathbb^d for some d, and the complex dimension is the exponent d in this product. Because \mathbb can in turn be modeled by \mathbb^2, a space with complex dimension d will have real dimension 2d. That is, a
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
of complex dimension d has real dimension 2d; and a complex algebraic variety of complex dimension d, away from any singular point, will also be a smooth manifold of real dimension 2d. However, for a
real algebraic variety In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomi ...
(that is a variety defined by equations with real coefficients), its
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
refers commonly to its complex dimension, and its real dimension refers to the maximum of the dimensions of the manifolds contained in the set of its real points. The real dimension is not greater than the dimension, and equals it if the variety is irreducible and has real points that are nonsingular. For example, the equation x^2+y^2+z^2=0 defines a variety of (complex) dimension 2 (a surface), but of real dimension 0 — it has only one real point, (0, 0, 0), which is singular.. The same considerations apply to
codimension In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals ...
. For example a smooth complex hypersurface in
complex projective space In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
of dimension ''n'' will be a manifold of dimension 2(''n'' − 1). A complex
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
does not separate a complex projective space into two components, because it has real codimension 2.


References

Complex manifolds Algebraic geometry Dimension {{mathanalysis-stub