In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, in particular the subfield of
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, a rational map or rational mapping is a kind of
partial function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain ...
between
algebraic varieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
. This article uses the convention that varieties are
irreducible.
Definition
Formal definition
Formally, a rational map
between two varieties is an
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
of pairs
in which
is a
morphism of varieties from a
non-empty open set
In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line.
In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
to
, and two such pairs
and
are considered equivalent if
and
coincide on the intersection
(this is, in particular,
vacuously true if the intersection is empty, but since
is assumed irreducible, this is impossible). The proof that this defines an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
relies on the following lemma:
* If two morphisms of varieties are equal on some non-empty open set, then they are equal.
is said to be dominant if one (equivalently, every) representative
in the equivalence class is a
dominant morphism, i.e. has a dense image.
is said to be birational if there exists a rational map
which is its inverse, where the composition is taken in the above sense.
The importance of rational maps to algebraic geometry is in the connection between such maps and maps between the
function fields of
and
. By definition, a
rational function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
is just a rational map whose range is the
projective line
In projective geometry and mathematics more generally, a projective line is, roughly speaking, the extension of a usual line by a point called a '' point at infinity''. The statement and the proof of many theorems of geometry are simplified by the ...
. Composition of functions then allows us to "
pull back" rational functions along a rational map, so that a single rational map
induces a
homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
of fields
. In particular, the following theorem is central: the
functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
from the
category
Category, plural categories, may refer to:
General uses
*Classification, the general act of allocating things to classes/categories Philosophy
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce)
* Category ( ...
of
projective varieties
In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in \mathbb^n of some finite family of homogeneous polynomials that generate a prime ideal, the ...
with dominant rational maps (over a fixed base field, for example
) to the category of finitely generated
field extension
In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ...
s of the base field with reverse inclusion of extensions as morphisms, which associates each variety to its function field and each map to the associated map of function fields, is an
equivalence of categories
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two Category (mathematics), categories that establishes that these categories are "essentially the same". There are numerous examples of cate ...
.
Examples
Rational maps of projective spaces
There is a rational map
sending a ratio