Strategies for handling ties
It is not always possible to assign rankings uniquely. For example, in a race or competition two (or more) entrants might tie for a place in the ranking. When computing an ordinal measurement, two (or more) of the quantities being ranked might measure equal. In these cases, one of the strategies below for assigning the rankings may be adopted. A common shorthand way to distinguish these ranking strategies is by the ranking numbers that would be produced for four items, with the first item ranked ahead of the second and third (which compare equal) which are both ranked ahead of the fourth. These names are also shown below.Standard competition ranking ("1224" ranking)
In competition ranking, items that compare equal receive the same ranking number, and then a gap is left in the ranking numbers. The number of ranking numbers that are left out in this gap is one less than the number of items that compared equal. Equivalently, each item's ranking number is 1 plus the number of items ranked above it. This ranking strategy is frequently adopted for competitions, as it means that if two (or more) competitors tie for a position in the ranking, the position of all those ranked below them is unaffected (i.e., a competitor only comes second if exactly one person scores better than them, third if exactly two people score better than them, fourth if exactly three people score better than them, etc.). Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first"), B gets ranking number 2 ("joint second"), C also gets ranking number 2 ("joint second") and D gets ranking number 4 ("fourth"). This method is called "Low" by IBM SPSS and "min" by the R programming language in their methods to handle ties.Modified competition ranking ("1334" ranking)
Sometimes, competition ranking is done by leaving the gaps in the ranking numbers ''before'' the sets of equal-ranking items (rather than after them as in standard competition ranking). The number of ranking numbers that are left out in this gap remains one less than the number of items that compared equal. Equivalently, each item's ranking number is equal to the number of items ranked equal to it or above it. This ranking ensures that a competitor only comes second if they score higher than all but one of their opponents, third if they score higher than all but two of their opponents, etc. Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first"), B gets ranking number 3 ("joint third"), C also gets ranking number 3 ("joint third") and D gets ranking number 4 ("fourth"). In this case, nobody would get ranking number 2 ("second") and that would be left as a gap. This method is called "High" by IBM SPSS and "max" by the R programming language in their methods to handle ties.Dense ranking ("1223" ranking)
In dense ranking, items that compare equally receive the same ranking number, and the next items receive the immediately following ranking number. Equivalently, each item's ranking number is 1 plus the number of items ranked above it that are distinct with respect to the ranking order. Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first"), B gets ranking number 2 ("joint second"), C also gets ranking number 2 ("joint second") and D gets ranking number 3 ("Third"). This method is called "Sequential" by IBM SPSS and "dense" by the R programming language in their methods to handle ties.Ordinal ranking ("1234" ranking)
In ordinal ranking, all items receive distinct ordinal numbers, including items that compare equal. The assignment of distinct ordinal numbers to items that compare equal can be done at random, or arbitrarily, but it is generally preferable to use a system that is arbitrary but consistent, as this gives stable results if the ranking is done multiple times. An example of an arbitrary but consistent system would be to incorporate other attributes into the ranking order (such as alphabetical ordering of the competitor's name) to ensure that no two items exactly match. With this strategy, if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first") and D gets ranking number 4 ("fourth"), and either B gets ranking number 2 ("second") and C gets ranking number 3 ("third") or C gets ranking number 2 ("second") and B gets ranking number 3 ("third"). In computer data processing, ordinal ranking is also referred to as "row numbering". This method corresponds to the "first", "last", and "random" methods in the R programming language to handle ties.Fractional ranking ("1 2.5 2.5 4" ranking)
Items that compare equal receive the same ranking number, which is the mean of what they would have under ordinal rankings; equivalently, the ranking number of 1 plus the number of items ranked above it plus half the number of items equal to it. This strategy has the property that the sum of the ranking numbers is the same as under ordinal ranking. For this reason, it is used in computing Borda counts and in statistical tests (see below). Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first"), B and C each get ranking number 2.5 (average of "joint second/third") and D gets ranking number 4 ("fourth"). Here is an example: Suppose you have the data set 1.0, 1.0, 2.0, 3.0, 3.0, 4.0, 5.0, 5.0, 5.0. The ordinal ranks are 1, 2, 3, 4, 5, 6, 7, 8, 9. For v = 1.0, the fractional rank is the average of the ordinal ranks: (1 + 2) / 2 = 1.5. In a similar manner, for v = 5.0, the fractional rank is (7 + 8 + 9) / 3 = 8.0. Thus the fractional ranks are: 1.5, 1.5, 3.0, 4.5, 4.5, 6.0, 8.0, 8.0, 8.0 This method is called "Mean" by IBM SPSS and "average" by the R programming language in their methods to handle ties.Statistics
Sports
Education
League tables are used to compare the academic achievements of different institutions. College and university rankings order institutions in higher education by combinations of factors. In addition to entire institutions, specific programs, departments, and schools are ranked. These rankings usually are conducted by magazines, newspapers, governments and academics. For example, league tables of British universities are published annually by ''Business
In business, league tables list the leaders in the business activity within a specific industry, ranking companies based on different criteria including revenue, earnings, and other relevant key performance indicators (such as market share and meeting customer expectations) enabling people to quickly analyze significant data.Applications
The rank methodology based on some specific indices is one of the most common systems used by policy makers and international organizations in order to assess the socio-economic context of the countries. Some notable examples include the Human Development Index (United Nations), Doing Business Index (Other examples
* In politics, rankings may focus on the comparison of economic, social, environmental and governance performance of countries. Politicians themselves have also been ranked, based on the extent of their activities. * In relation to credit standing, the ranking of a security refers to where that particular security would stand in a wind up of the issuing company, i.e., its seniority in the company's capital structure. For instance, capital notes are subordinated securities; they would rank behind senior debt in a wind up. In other words, the holders of senior debt would be paid out before subordinated debt holders received any funds. *See also
* Ordinal data * Percentile rank * Rating (disambiguation)References
External links