HOME

TheInfoList



OR:

Radiation pressure (also known as light pressure) is mechanical
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
exerted upon a surface due to the exchange of
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
between the object and the
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
. This includes the momentum of light or
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
of any
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
that is absorbed,
reflected Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The ...
, or otherwise emitted (e.g.
black-body radiation Black-body radiation is the thermal radiation, thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific ...
) by matter on any scale (from macroscopic objects to dust particles to gas molecules). The associated force is called the radiation pressure force, or sometimes just the force of light. The forces generated by radiation pressure are generally too small to be noticed under everyday circumstances; however, they are important in some physical processes and technologies. This particularly includes objects in outer space, where it is usually the main force acting on objects besides gravity, and where the net effect of a tiny force may have a large cumulative effect over long periods of time. For example, had the effects of the Sun's radiation pressure on the spacecraft of the ''Viking'' program been ignored, the spacecraft would have missed Mars orbit by about . Radiation pressure from starlight is crucial in a number of astrophysical processes as well. The significance of radiation pressure increases rapidly at extremely high temperatures and can sometimes dwarf the usual gas pressure, for instance, in stellar interiors and
thermonuclear weapons A thermonuclear weapon, fusion weapon or hydrogen bomb (H-bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
. Furthermore, large lasers operating in space have been suggested as a means of propelling sail craft in
beam-powered propulsion Beam-powered propulsion, also known as directed energy propulsion, is a class of aircraft or spacecraft propulsion that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a microwave or a ...
. Radiation pressure forces are the bedrock of laser technology and the branches of science that rely heavily on lasers and other optical technologies. That includes, but is not limited to, biomicroscopy (where light is used to irradiate and observe microbes, cells, and molecules),
quantum optics Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry that studies the behavior of photons (individual quanta of light). It includes the study of the particle-like properties of photons and their interaction ...
, and optomechanics (where light is used to probe and control objects like atoms, qubits and macroscopic quantum objects). Direct applications of the radiation pressure force in these fields are, for example,
laser cooling Laser cooling includes several techniques where atoms, molecules, and small mechanical systems are cooled with laser light. The directed energy of lasers is often associated with heating materials, e.g. laser cutting, so it can be counterintuit ...
(the subject of the 1997
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
), quantum control of macroscopic objects and
atoms Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other ...
(2012 Nobel Prize in Physics),
interferometry Interferometry is a technique which uses the ''interference (wave propagation), interference'' of Superposition principle, superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important inves ...
(2017 Nobel Prize in Physics) and optical tweezers (2018 Nobel Prize in Physics). Radiation pressure can equally well be accounted for by considering the momentum of a classical electromagnetic field or in terms of the momenta of
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
, particles of light. The interaction of electromagnetic waves or photons with matter may involve an exchange of
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
. Due to the law of
conservation of momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
, any change in the total momentum of the waves or photons must involve an equal and opposite change in the momentum of the matter it interacted with (
Newton's third law of motion Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body r ...
), as is illustrated in the accompanying figure for the case of light being perfectly reflected by a surface. This transfer of momentum is the general explanation for what we term radiation pressure.


Discovery

Johannes Kepler Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, Natural philosophy, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best know ...
put forward the concept of radiation pressure in 1619 to explain the observation that a tail of a
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
always points away from the Sun. The assertion that light, as
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
, has the property of
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
and thus exerts a
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
upon any surface that is exposed to it was published by
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
in 1862, and proven experimentally by Russian physicist
Pyotr Lebedev Pyotr Nikolaevich Lebedev (; 24 February 1866 – 1 March 1912) was a Russian physicist. His name was also transliterated as Peter Lebedew and Peter Lebedev. Lebedev was the creator of the first scientific school in Russia. Career Lebedev made hi ...
in 1900 and by Ernest Fox Nichols and Gordon Ferrie Hull in 1901. The pressure is very small, but can be detected by allowing the radiation to fall upon a delicately poised vane of reflective metal in a
Nichols radiometer A Nichols radiometer was the apparatus used by Ernest Fox Nichols and Gordon Ferrie Hull in 1901 for the measurement of radiation pressure. It consisted of a pair of small silvered glass mirrors suspended in the manner of a torsion balance b ...
(this should not be confused with the
Crookes radiometer The Crookes radiometer (also known as a light mill) consists of an airtight glass bulb containing a partial vacuum, with a set of vanes which are mounted on a spindle inside. The vanes rotate when exposed to light, with faster rotation for more ...
, whose characteristic motion is ''not'' caused by radiation pressure but by air flow caused by temperature differentials.)


Theory

Radiation pressure can be viewed as a consequence of the
conservation of momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
given the momentum attributed to electromagnetic radiation. That momentum can be equally well calculated on the basis of electromagnetic theory or from the combined momenta of a stream of photons, giving identical results as is shown below.


Radiation pressure from momentum of an electromagnetic wave

According to Maxwell's theory of electromagnetism, an electromagnetic wave carries momentum. Momentum will be transferred to any surface it strikes that absorbs or reflects the radiation. Consider the momentum transferred to a perfectly absorbing (black) surface. The energy flux (irradiance) of a plane wave is calculated using the
Poynting vector In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or '' power flow'' of an electromagnetic field. The SI unit of the Poynting vector is the wat ...
, which is the
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
of the
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
vector ''E'' and the
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
's auxiliary field vector (or ''
magnetizing field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
'') ''H''. The magnitude, denoted by ''S'', divided by the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is , which is the speed of light, , times pressure, . That pressure is experienced as radiation pressure on the surface: P_\text = \frac = \frac where P is pressure (usually in pascals), I_f is the incident
irradiance In radiometry, irradiance is the radiant flux ''received'' by a ''surface'' per unit area. The SI unit of irradiance is the watt per square metre (symbol W⋅m−2 or W/m2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) ...
(usually in W/m2) and c is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
in vacuum. Here, . If the surface is planar at an angle ''α'' to the incident wave, the intensity across the surface will be geometrically reduced by the cosine of that angle and the component of the radiation force against the surface will also be reduced by the cosine of ''α'', resulting in a pressure: P_\text = \frac \cos^2 \alpha The momentum from the incident wave is in the same direction of that wave. But only the component of that momentum normal to the surface contributes to the pressure on the surface, as given above. The component of that force tangent to the surface is not called pressure.


Radiation pressure from reflection

The above treatment for an incident wave accounts for the radiation pressure experienced by a black (totally absorbing) body. If the wave is specularly reflected, then the recoil due to the reflected wave will further contribute to the radiation pressure. In the case of a perfect reflector, this pressure will be identical to the pressure caused by the incident wave: P_\text = \frac thus ''doubling'' the net radiation pressure on the surface: P_\text = P_\text + P_\text = 2 \frac For a partially reflective surface, the second term must be multiplied by the reflectivity (also known as reflection coefficient of intensity), so that the increase is less than double. For a diffusely reflective surface, the details of the reflection and geometry must be taken into account, again resulting in an increased net radiation pressure of less than double.


Radiation pressure by emission

Just as a wave reflected from a body contributes to the net radiation pressure experienced, a body that emits radiation of its own (rather than reflected) obtains a radiation pressure again given by the irradiance of that emission ''in the direction normal to the surface'' ''I''e: P_\text = \frac The emission can be from
black-body radiation Black-body radiation is the thermal radiation, thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific ...
or any other radiative mechanism. Since all materials emit black-body radiation (unless they are totally reflective or at absolute zero), this source for radiation pressure is ubiquitous but usually tiny. However, because black-body radiation increases rapidly with temperature (as the fourth power of temperature, given by the
Stefan–Boltzmann law The Stefan–Boltzmann law, also known as ''Stefan's law'', describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Lu ...
), radiation pressure due to the temperature of a very hot object (or due to incoming black-body radiation from similarly hot surroundings) can become significant. This is important in stellar interiors.


Radiation pressure in terms of photons

Electromagnetic radiation can be viewed in terms of particles rather than waves; these particles are known as
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
. Photons do not have a rest-mass; however, photons are never at rest (they move at the speed of light) and acquire a momentum nonetheless which is given by: p = \dfrac = \frac, where is momentum, is the
Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
, is
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
, and is speed of light in vacuum. And is the energy of a single photon given by: E_p = h \nu = \frac The radiation pressure again can be seen as the transfer of each photon's momentum to the opaque surface, plus the momentum due to a (possible) recoil photon for a (partially) reflecting surface. Since an incident wave of irradiance over an area has a power of , this implies a flux of photons per second per unit area striking the surface. Combining this with the above expression for the momentum of a single photon, results in the same relationships between irradiance and radiation pressure described above using classical electromagnetics. And again, reflected or otherwise emitted photons will contribute to the net radiation pressure identically.


Compression in a uniform radiation field

In general, the pressure of electromagnetic waves can be obtained from the vanishing of the trace of the electromagnetic stress tensor: since this trace equals 3''P'' − ''u'', we get P = \frac, where is the radiation energy per unit volume. This can also be shown in the specific case of the pressure exerted on surfaces of a body in
thermal equilibrium Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in t ...
with its surroundings, at a temperature : the body will be surrounded by a uniform radiation field described by the Planck black-body radiation law and will experience a compressive pressure due to that impinging radiation, its reflection, and its own black-body emission. From that it can be shown that the resulting pressure is equal to one third of the total
radiant energy In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic radiation, electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calcul ...
per unit volume in the surrounding space. By using
Stefan–Boltzmann law The Stefan–Boltzmann law, also known as ''Stefan's law'', describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Lu ...
, this can be expressed as P_\text = \frac = \frac T^4, where \sigma is the Stefan–Boltzmann constant.


Solar radiation pressure

Solar radiation pressure is due to the Sun's radiation at closer distances, thus especially within the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
. While it acts on all objects, its net effect is generally greater on smaller bodies, since they have a larger ratio of surface area to mass. All spacecraft experience such a pressure, except when they are behind the shadow of a larger orbiting body. Solar radiation pressure on objects near the Earth may be calculated using the Sun's
irradiance In radiometry, irradiance is the radiant flux ''received'' by a ''surface'' per unit area. The SI unit of irradiance is the watt per square metre (symbol W⋅m−2 or W/m2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) ...
at 1  AU, known as the
solar constant The solar constant (''GSC'') measures the amount of energy received by a given area one astronomical unit away from the Sun. More specifically, it is a flux density measuring mean solar electromagnetic radiation ( total solar irradiance) per un ...
, or ''G''SC, whose value is set at 1361  W/ m2 as of 2011. All stars have a spectral energy distribution that depends on their surface temperature. The distribution is approximately that of
black-body radiation Black-body radiation is the thermal radiation, thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific ...
. This distribution must be taken into account when calculating the radiation pressure or identifying reflector materials for optimizing a
solar sail Solar sails (also known as lightsails, light sails, and photon sails) are a method of spacecraft propulsion using radiation pressure exerted by sunlight on large surfaces. A number of spaceflight missions to test solar propulsion and navigati ...
, for instance. Momentary or hours long solar pressures can indeed escalate due to release of
solar flares A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Stellar atmosphere, Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar partic ...
and
coronal mass ejections A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding ...
, but effects remain essentially immeasureable in relation to Earth's orbit. However these pressures persist over eons, such that cumulatively having produced a measurable movement on the Earth-Moon system's orbit.


Pressures of absorption and reflection

Solar radiation pressure at the Earth's distance from the Sun, may be calculated by dividing the
solar constant The solar constant (''GSC'') measures the amount of energy received by a given area one astronomical unit away from the Sun. More specifically, it is a flux density measuring mean solar electromagnetic radiation ( total solar irradiance) per un ...
''G''SC (above) by the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
''c''. For an absorbing sheet facing the Sun, this is simply:Georgevic, R. M. (1973) "The Solar Radiation Pressure Forces and Torques Model", ''The Journal of the Astronautical Sciences'', Vol. 27, No. 1, Jan–Feb. First known publication describing how solar radiation pressure creates forces and torques that affect spacecraft. P = \frac \approx 4.5 \cdot 10^~\text = 4.5~\mu\text. This result is in pascals, equivalent to N/m2 (
newtons The newton (symbol: N) is the unit of force in the International System of Units (SI). Expressed in terms of SI base units, it is 1 kg⋅m/s2, the force that accelerates a mass of one kilogram at one metre per second squared. The unit i ...
per square meter). For a sheet at an angle ''α'' to the Sun, the effective area ''A'' of a sheet is reduced by a geometrical factor resulting in a force ''in the direction of the sunlight'' of: F = \frac (A \cos \alpha). To find the component of this force normal to the surface, another cosine factor must be applied resulting in a pressure ''P'' on the surface of: P = \frac = \frac \cos^2 \alpha. Note, however, that in order to account for the net effect of solar radiation on a spacecraft for instance, one would need to consider the ''total'' force (in the direction away from the Sun) given by the preceding equation, rather than just the component normal to the surface that we identify as "pressure". The solar constant is defined for the Sun's radiation at the distance to the Earth, also known as one
astronomical unit The astronomical unit (symbol: au or AU) is a unit of length defined to be exactly equal to . Historically, the astronomical unit was conceived as the average Earth-Sun distance (the average of Earth's aphelion and perihelion), before its m ...
(au). Consequently, at a distance of ''R'' astronomical units (''R'' thus being dimensionless), applying the
inverse-square law In science, an inverse-square law is any scientific law stating that the observed "intensity" of a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental ca ...
, we would find: P = \frac \cos^2 \alpha. Finally, considering not an absorbing but a perfectly reflecting surface, the pressure is ''doubled'' due to the reflected wave, resulting in: P = 2\frac \cos^2 \alpha. Note that unlike the case of an absorbing material, the resulting force on a reflecting body is given exactly by this pressure acting normal to the surface, with the tangential forces from the incident and reflecting waves canceling each other. In practice, materials are neither totally reflecting nor totally absorbing, so the resulting force will be a weighted average of the forces calculated using these formulas.


Radiation pressure perturbations

Solar radiation pressure is a source of
orbital perturbations Orbital may refer to: Sciences Chemistry and physics * Atomic orbital * Molecular orbital * Hybrid orbital Astronomy and space flight * Orbit ** Earth orbit Medicine and physiology * Orbit (anatomy), also known as the ''orbital bone'' * Orbit ...
. It significantly affects the orbits and trajectories of small bodies including all spacecraft. Solar radiation pressure affects bodies throughout much of the Solar System. Small bodies are more affected than large ones because of their lower mass relative to their surface area. Spacecraft are affected along with natural bodies (comets, asteroids, dust grains, gas molecules). The radiation pressure results in forces and torques on the bodies that can change their translational and rotational motions. Translational changes affect the orbits of the bodies. Rotational rates may increase or decrease. Loosely aggregated bodies may break apart under high rotation rates. Dust grains can either leave the Solar System or spiral into the Sun. A whole body is typically composed of numerous surfaces that have different orientations on the body. The facets may be flat or curved. They will have different areas. They may have optical properties differing from other aspects. At any particular time, some facets are exposed to the Sun, and some are in shadow. Each surface exposed to the Sun is reflecting, absorbing, and emitting radiation. Facets in shadow are emitting radiation. The summation of pressures across all of the facets defines the net force and torque on the body. These can be calculated using the equations in the preceding sections. The Yarkovsky effect affects the translation of a small body. It results from a face leaving solar exposure being at a higher temperature than a face approaching solar exposure. The radiation emitted from the warmer face is more intense than that of the opposite face, resulting in a net force on the body that affects its motion. The YORP effect is a collection of effects expanding upon the earlier concept of the Yarkovsky effect, but of a similar nature. It affects the spin properties of bodies. The
Poynting–Robertson effect The Poynting–Robertson effect, also known as Poynting–Robertson drag, named after John Henry Poynting and Howard P. Robertson, is a process by which solar radiation causes a dust grain orbiting a star to lose angular momentum relative to its or ...
applies to grain-size particles. From the perspective of a grain of dust circling the Sun, the Sun's radiation appears to be coming from a slightly forward direction (
aberration of light In astronomy, aberration (also referred to as astronomical aberration, stellar aberration, or velocity aberration) is a phenomenon where celestial objects exhibit an apparent motion about their true positions based on the velocity of the obser ...
). Therefore, the absorption of this radiation leads to a force with a component against the direction of movement. (The angle of aberration is tiny, since the radiation is moving at the speed of light, while the dust grain is moving many orders of magnitude slower than that.) The result is a gradual spiral of dust grains into the Sun. Over long periods of time, this effect cleans out much of the dust in the Solar System. While rather small in comparison to other forces, the radiation pressure force is inexorable. Over long periods of time, the net effect of the force is substantial. Such feeble pressures can produce marked effects upon minute particles like gas ions and
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, and are essential in the theory of electron emission from the Sun, of
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
ary material, and so on. Because the ratio of surface area to volume (and thus mass) increases with decreasing particle size, dusty (
micrometre The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a uni ...
-size) particles are susceptible to radiation pressure even in the outer Solar System. For example, the evolution of the outer rings of Saturn is significantly influenced by radiation pressure. As a consequence of light pressure,
Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
in 1909 predicted the existence of "radiation friction", which would oppose the movement of matter. He wrote: "radiation will exert pressure on both sides of the plate. The forces of pressure exerted on the two sides are equal if the plate is at rest. However, if it is in motion, more radiation will be reflected on the surface that is ahead during the motion (front surface) than on the back surface. The backward acting force of pressure exerted on the front surface is thus larger than the force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief."


Solar sails

Solar sailing, an experimental method of
spacecraft propulsion Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric e ...
, uses radiation pressure from the Sun as a motive force. The idea of interplanetary travel by light was mentioned by
Jules Verne Jules Gabriel Verne (;''Longman Pronunciation Dictionary''. ; 8 February 1828 – 24 March 1905) was a French novelist, poet and playwright. His collaboration with the publisher Pierre-Jules Hetzel led to the creation of the ''Voyages extraor ...
in his 1865 novel ''
From the Earth to the Moon ''From the Earth to the Moon: A Direct Route in 97 Hours, 20 Minutes'' () is an 1865 novel by Jules Verne. It tells the story of the Baltimore Gun Club, a post-American Civil War society of weapons enthusiasts, and their attempts to build an en ...
''. A sail reflects about 90% of the incident radiation. The 10% that is absorbed is radiated away from both surfaces, with the proportion emitted from the unlit surface depending on the thermal conductivity of the sail. A sail has curvature, surface irregularities, and other minor factors that affect its performance. The Japan Aerospace Exploration Agency (
JAXA The is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into o ...
) has successfully unfurled a solar sail in space, which has already succeeded in propelling its payload with the IKAROS project.


Cosmic effects of radiation pressure

Radiation pressure has had a major effect on the development of the cosmos, from the birth of the universe to ongoing formation of stars and shaping of clouds of dust and gasses on a wide range of scales.


Early universe

The photon epoch is a phase when the energy of the universe was dominated by photons, between 10 seconds and 380,000 years after the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
.


Galaxy formation and evolution

The process of galaxy formation and evolution began early in the history of the cosmos. Observations of the early universe strongly suggest that objects grew from bottom-up (i.e., smaller objects merging to form larger ones). As stars are thereby formed and become sources of electromagnetic radiation, radiation pressure from the stars becomes a factor in the dynamics of remaining circumstellar material.


Clouds of dust and gases

The gravitational compression of clouds of dust and gases is strongly influenced by radiation pressure, especially when the condensations lead to star births. The larger young stars forming within the compressed clouds emit intense levels of radiation that shift the clouds, causing either dispersion or condensations in nearby regions, which influences birth rates in those nearby regions.


Clusters of stars

Stars predominantly form in regions of large clouds of dust and gases, giving rise to
star cluster A star cluster is a group of stars held together by self-gravitation. Two main types of star clusters can be distinguished: globular clusters, tight groups of ten thousand to millions of old stars which are gravitationally bound; and open cluster ...
s. Radiation pressure from the member stars eventually disperses the clouds, which can have a profound effect on the evolution of the cluster. Many
open cluster An open cluster is a type of star cluster made of tens to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, and ...
s are inherently unstable, with a small enough mass that the
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
of the system is lower than the average
velocity Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical q ...
of the constituent stars. These clusters will rapidly disperse within a few million years. In many cases, the stripping away of the gas from which the cluster formed by the radiation pressure of the hot young stars reduces the cluster mass enough to allow rapid dispersal.


Star formation

Star formation Star formation is the process by which dense regions within molecular clouds in interstellar space—sometimes referred to as "stellar nurseries" or "star-forming regions"—Jeans instability, collapse and form stars. As a branch of astronomy, sta ...
is the process by which dense regions within
molecular cloud A molecular cloud—sometimes called a stellar nursery if star formation is occurring within—is a type of interstellar cloud of which the density and size permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, ...
s in interstellar space collapse to form
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s. As a branch of
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
, star formation includes the study of the
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
and
giant molecular cloud A molecular cloud—sometimes called a stellar nursery if star formation is occurring within—is a type of interstellar cloud of which the density and size permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen ...
s (GMC) as precursors to the star formation process, and the study of
protostar A protostar is a very young star that is still gathering mass from its parent molecular cloud. It is the earliest phase in the process of stellar evolution. For a low-mass star (i.e. that of the Sun or lower), it lasts about 500,000 years. The p ...
s and young stellar objects as its immediate products. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of
binary star A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars us ...
s and the initial mass function.


Stellar planetary systems

Planetary system A planetary system is a set of gravity, gravitationally bound non-stellar Astronomical object, bodies in or out of orbit around a star or star system. Generally speaking, systems with one or more planets constitute a planetary system, although ...
s are generally believed to form as part of the same process that results in
star formation Star formation is the process by which dense regions within molecular clouds in interstellar space—sometimes referred to as "stellar nurseries" or "star-forming regions"—Jeans instability, collapse and form stars. As a branch of astronomy, sta ...
. A
protoplanetary disk A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are sim ...
forms by gravitational collapse of a
molecular cloud A molecular cloud—sometimes called a stellar nursery if star formation is occurring within—is a type of interstellar cloud of which the density and size permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, ...
, called a
solar nebula There is evidence that the formation of the Solar System began about 4.6 bya, billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, whil ...
, and then evolves into a planetary system by collisions and gravitational capture. Radiation pressure can clear a region in the immediate vicinity of the star. As the formation process continues, radiation pressure continues to play a role in affecting the distribution of matter. In particular, dust and grains can spiral into the star or escape the stellar system under the action of radiation pressure.


Stellar interiors

In star, stellar interiors the temperatures are very high. Stellar models predict a temperature of 15 MK in the center of the Sun, and at the cores of supergiant stars the temperature may exceed 1 GK. As the radiation pressure scales as the fourth power of the temperature, it becomes important at these high temperatures. In the Sun, radiation pressure is still quite small when compared to the gas pressure. In the heaviest non-degenerate stars, radiation pressure is the dominant pressure component.


Comets

Solar radiation pressure strongly affects comet tails. Solar heating causes gases to be released from the comet nucleus, which also carry away dust grains. Radiation pressure and solar wind then drive the dust and gases away from the Sun's direction. The gases form a generally straight tail, while slower moving dust particles create a broader, curving tail.


Laser applications of radiation pressure


Optical tweezers

Lasers can be used as a source of monochromatic light with wavelength \lambda. With a set of lenses, one can focus the laser beam to a point that is \lambda in diameter (or r = \lambda/2). The radiation pressure of a ''P'' = 30 mW laser with ''λ'' = 1064 nm can therefore be computed as follows. Area: A = \pi\left(\frac\right)^2 \approx 10^ \text^2, force: F = \frac = \frac \approx 10^ \text, pressure: p = \frac \approx \frac = 100 \text. This is used to trap or levitate particles in optical tweezers.


Light–matter interactions

The reflection of a laser pulse from the surface of an elastic solid can give rise to various types of elastic waves that propagate inside the solid or liquid. In other words, the light can excite and/or amplify motion of, and in, materials. This is the subject of study in the field of optomechanics. The weakest waves are generally those that are generated by the radiation pressure acting during the reflection of the light. Such light-pressure-induced elastic waves have for example observed inside an ultrahigh-reflectivity dielectric mirror. These waves are the most basic fingerprint of a light-solid matter interaction on the macroscopic scale. In the field of ''cavity'' optomechanics, light is trapped and resonantly enhanced in Optical cavity, optical cavities, for example between mirrors. This serves the purpose of gravely enhancing the Intensity (physics), power of the light, and the radiation pressure it can exert on objects and materials. Optical control (that is, manipulation of the motion) of a plethora of objects has been realized: from kilometers long beams (such as in the LIGO, LIGO interferometer) to clouds of atoms, and from Microfabrication, micro-engineered trampolines to superfluids. Opposite to exciting or amplifying motion, light can also damp the motion of objects. Laser cooling is a method of cooling materials very close to absolute zero by converting some of material's motional energy into light. Kinetic energy and thermal energy of the material are synonyms here, because they represent the energy associated with Brownian motion of the material. Atoms traveling towards a laser light source perceive a doppler effect tuned to the absorption frequency of the target element. The radiation pressure on the atom slows movement in a particular direction until the Doppler effect moves out of the frequency range of the element, causing an overall cooling effect. An other active research area of laser–matter interaction is the radiation pressure acceleration of ions or protons from thin–foil targets. High ion energy beams can be generated for medical applications (for example in ion beam therapy) by the radiation pressure of short laser pulses on ultra-thin foils.


See also

* Absorption (electromagnetic radiation) * Cavity optomechanics * Laser cooling * LIGO * Optical tweezers * Photon *
Poynting vector In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or '' power flow'' of an electromagnetic field. The SI unit of the Poynting vector is the wat ...
* Poynting's theorem *
Poynting–Robertson effect The Poynting–Robertson effect, also known as Poynting–Robertson drag, named after John Henry Poynting and Howard P. Robertson, is a process by which solar radiation causes a dust grain orbiting a star to lose angular momentum relative to its or ...
* Quantum optics * Solar constant * Solar sail * Sunlight * Wave–particle duality * Yarkovsky effect * Yarkovsky–O'Keefe–Radzievskii–Paddack effect


References


Further reading

* Demir, Dilek, "A table-top demonstration of radiation pressure", 2011, Diplomathesis, E-Theses univie {{Authority control Celestial mechanics Radiation effects Radiation