Quantitative risk assessment software
   HOME

TheInfoList



OR:

Quantitative risk assessment (QRA) software and methodologies give
quantitative Quantitative may refer to: * Quantitative research, scientific investigation of quantitative properties * Quantitative analysis (disambiguation) * Quantitative verse, a metrical system in poetry * Statistics, also known as quantitative analysis ...
estimates of risks, given the parameters defining them. They are used in the financial sector, the chemical process industry, and other areas. In financial terms, quantitative risk assessments include a calculation of the
single loss expectancy Single-loss expectancy (SLE) is the monetary value expected from the occurrence of a risk on an asset. It is related to risk management and risk assessment. Single-loss expectancy is mathematically expressed as: = \times Where the exposure f ...
of monetary value of an asset. In the chemical process and petrochemical industries a QRA is primarily concerned with determining the potential loss of life (PLL) caused by undesired events. Specialist software can be used to model the effects of such an event, and to help calculate the potential loss of life. Some organisations use the risk outputs to assess the implied cost to avert a fatality (ICAF) which can be used to set quantified criteria for what is an unacceptable risk and what is tolerable. For the explosives industry, QRA can be used for many explosive risk applications. It is especially useful for site risk analysis when reliance on quantity distance (QD) tables is not feasible.


Limitations

Some of the QRA software models described above must be used in isolation: for example the results from a consequence model cannot be used directly in a risk model. Other QRA software programs link different calculation modules together automatically to facilitate the process. Some of the software is proprietary and can only be used within certain organisations. Due to the large amount of data processing required by QRA calculations, the usual approach has been to use two-dimensional ellipses to represent hazard zones such as the area around an explosion which poses a 10% chance of fatality. Similarly, a pragmatic approach is used in the simplification of dispersion results. Typically a flat terrain, unobstructed world is used to determine the behaviour of a dispersing cloud and/or a vaporizing pool. This presents problems when the effects of non-flat terrain or the complex geometry of process plants would no doubt affect the behaviour of a dispersing cloud. Though they have limitations, the 2D hazard zone and simplified approach to 3D dispersion modelling allow the handling of large volumes of risk results with known assumptions to assist in decision-making. The
trade-off A trade-off (or tradeoff) is a situational decision that involves diminishing or losing one quality, quantity, or property of a set or design in return for gains in other aspects. In simple terms, a tradeoff is where one thing increases, and anot ...
shifts as computer processing power increases. The modeling of the consequences of hazardous events in a
true 3D 3D computer graphics, or “3D graphics,” sometimes called CGI, 3D-CGI or three-dimensional computer graphics are graphics that use a three-dimensional representation of geometric data (often Cartesian) that is stored in the computer for th ...
manner may require a different approach, for example using a computational fluid dynamics method to study cloud dispersion over hilly terrain. The creation of CFD models requires significantly more investment of time on the part of the modeling analyst (because of the increased complexity of the modeling), which may not be justified in all cases. One major limitation of QRA in the safety field is that it is focussed primarily on the loss of containment of hazardous fluids and what happens when they are released. This renders QRA somewhat unworkable in hazardous industries that do not focus on fluid containment yet are still subject to catastrophic events (e.g. aviation, pharmaceuticals, mining, water treatment, etc.) This has led to the development of a risk process that draws on the experience of organisations and their employees to produce risk assessments that produce potential loss of life (PLL) outputs without fault and event tree modelling. This process is probably most commonly known by the name SQRA which was the first methodology to enter the marketplace in the late 1990s but is perhaps more accurately described by the term Experience-based Quantification (EBQ). Today there is a choice of software with which to undertake this methodology and it has been used extensively in the mining industry on a global basis. In an effort to be more fair and to avoid adding to already high imprisonment rates in the US, courts across America have started using quantitative risk assessment software when trying to make decisions about releasing people on bail and sentencing, which are based on their history and other attributes. It analyzed
recidivism Recidivism (; from ''recidive'' and ''ism'', from Latin ''recidīvus'' "recurring", from ''re-'' "back" and ''cadō'' "I fall") is the act of a person repeating an undesirable behavior after they have experienced negative consequences of th ...
risk scores calculated by one of the most commonly used tools, the Northpointe COMPAS system, and looked at outcomes over two years, and found that only 61% of those deemed high risk actually committed additional crimes during that period and that African-American defendants were far more likely to be given high scores that white defendants. These results are part of larger questions being raised in the field of
machine ethics Machine ethics (or machine morality, computational morality, or computational ethics) is a part of the ethics of artificial intelligence concerned with adding or ensuring moral behaviors of man-made machines that use artificial intelligence, otherw ...
with regard to the risks of perpetuating patterns of discrimination via the use of
big data Though used sometimes loosely partly because of a lack of formal definition, the interpretation that seems to best describe Big data is the one associated with large body of information that we could not comprehend when used only in smaller am ...
and
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
across many fields.


References

{{reflist *NATIONAL MINERALS INDUSTRY SAFETY AND HEALTH RISK ASSESSMENT GUIDELINE, Joy J & Griffiths D, 2007, p. 61 Evaluation methods Impact assessment Occupational safety and health Probability assessment Risk analysis software