Statement
:References
* * * *{{Citation , last1=Watson , first1=G. N. , title=Theorems stated by Ramanujan. VII: Theorems on continued fractions. , doi=10.1112/jlms/s1-4.1.39 , jfm=55.0273.01 , year=1929 , journal=Journal of the London Mathematical Society , issn=0024-6107 , volume=4 , issue=1 , pages=39–48 * Foata, D., & Han, G. N. (2001). The triple, quintuple and septuple product identities revisited. In The Andrews Festschrift (pp. 323–334). Springer, Berlin, Heidelberg. * Cooper, S. (2006). The quintuple product identity. International Journal of Number Theory, 2(01), 115-161.Further reading
* Subbarao, M. V., & Vidyasagar, M. (1970). On Watson’s quintuple product identity. Proceedings of the American Mathematical Society, 26(1), 23-27. * Hirschhorn, M. D. (1988). A generalisation of the quintuple product identity. Journal of the Australian Mathematical Society, 44(1), 42-45. * Alladi, K. (1996). The quintuple product identity and shifted partition functions. Journal of Computational and Applied Mathematics, 68(1-2), 3-13. * Farkas, H., & Kra, I. (1999). On the quintuple product identity. Proceedings of the American Mathematical Society, 127(3), 771-778. * Chen, W. Y., Chu, W., & Gu, N. S. (2005). Finite form of the quintuple product identity. arXiv preprint math/0504277.