HOME

TheInfoList



OR:

Quasioptics concerns the propagation of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
where the
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
is comparable to the size of the optical components (e.g. lenses, mirrors, and apertures) and hence diffraction effects may become significant. It commonly describes the propagation of
Gaussian beam In optics, a Gaussian beam is a beam of electromagnetic radiation with high monochromaticity whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. Thi ...
s where the
beam width The beam diameter or beam width of an electromagnetic beam is the diameter along any specified line that is perpendicular to the beam axis and intersects it. Since beams typically do not have sharp edges, the diameter can be defined in many differ ...
is comparable to the wavelength. This is in contrast to
geometrical optics Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of '' rays''. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumsta ...
, where the wavelength is small compared to the relevant length scales. Quasioptics is so named because it represents an intermediate regime between conventional
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultra ...
and
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
, and is often relevant to the description of signals in the
far-infrared Far infrared (FIR) is a region in the infrared spectrum of electromagnetic radiation. Far infrared is often defined as any radiation with a wavelength of 15 micrometers (μm) to 1 mm (corresponding to a range of about 20  THz to ...
or
terahertz Terahertz or THz may refer to: * Terahertz (unit), a unit of frequency, defined as one trillion (1012) cycles per second or 1012 hertz * Terahertz radiation, electromagnetic waves within the ITU-designated band of frequencies from 0.3 to 3 terahe ...
region of the electromagnetic spectrum. It represents a simplified version of the more rigorous treatment of physical optics. Quasi-optical systems may also operate at lower frequencies such as millimeter wave,
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequency, frequencies between 300 MHz and 300 GHz respectively. Different sources define different fre ...
, and even lower.


See also

*
Optoelectronics Optoelectronics (or optronics) is the study and application of electronic devices and systems that find, detect and control light, usually considered a sub-field of photonics. In this context, ''light'' often includes invisible forms of radiati ...


References

Optics Terahertz technology {{optics-stub