In
thermodynamics
Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
, a quasi-static process, also known as a quasi-equilibrium process (from Latin ''quasi'', meaning ‘as if’), is a
thermodynamic process
Classical thermodynamics considers three main kinds of thermodynamic processes: (1) changes in a system, (2) cycles in a system, and (3) flow processes.
(1) A Thermodynamic process is a process in which the thermodynamic state of a system is c ...
that happens slowly enough for the system to remain in internal physical (but not necessarily chemical)
thermodynamic equilibrium
Thermodynamic equilibrium is a notion of thermodynamics with axiomatic status referring to an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable ...
. An example of this is quasi-static expansion of a mixture of hydrogen and oxygen gas, where the
volume
Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
of the system changes so slowly that the
pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
remains uniform throughout the system at each instant of time during the process. Such an idealized process is a succession of physical equilibrium states, characterized by infinite slowness.
[Rajput, R.K. (2010). ''A Textbook of Engineering Thermodynamics'', 4th edition, Laxmi Publications (P) Ltd, New Delhi, pages 21, 45, 58.]
Only in a quasi-static thermodynamic process can we exactly define
intensive quantities (such as pressure,
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
,
specific volume
In thermodynamics, the specific volume of a substance (symbol: , nu) is the quotient of the substance's volume () to its mass ():
:\nu = \frac
It is a mass-specific intrinsic property of the substance. It is the reciprocal of density (rho) ...
,
specific entropy) of the system at any instant during the whole process; otherwise, since no internal equilibrium is established, different parts of the system would have different values of these quantities, so a single value per quantity may not be sufficient to represent the whole system. In other words, when an
equation for a change in a state function contains ''P'' or ''T'', it implies a quasi-static process.
Relation to reversible process
While all
reversible processes are quasi-static, most authors do not require a general quasi-static process to maintain equilibrium between system and surroundings and avoid dissipation,
[ H. DeVoe (2020]
online
which are defining characteristics of a reversible process. For example, quasi-static compression of a system by a piston subject to
friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
is irreversible; although the system is always in internal thermal equilibrium, the friction ensures the generation of dissipative entropy, which goes against the definition of reversibility. Any engineer would remember to include friction when calculating the dissipative entropy generation.
An example of a quasi-static process that is not idealizable as reversible is slow
heat transfer
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
between two bodies on two finitely different temperatures, where the heat transfer rate is controlled by a poorly conductive partition between the two bodies. In this case, no matter how slowly the process takes place, the state of the composite system consisting of the two bodies is far from equilibrium, since thermal equilibrium for this composite system requires that the two bodies be at the same temperature. Nevertheless, the entropy change for each body can be calculated using the Clausius equality for reversible heat transfer.
PV-work in various quasi-static processes
# Constant pressure:
Isobaric process
In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the Thermodynamic system, system stays constant: Δ''P'' = 0. The heat transferred to the system does work (thermodynamics), work, but a ...
es,
# Constant volume:
Isochoric process
In thermodynamics, an isochoric process, also called a constant-volume process, an isovolumetric process, or an isometric process, is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant ...
es,
# Constant temperature:
Isothermal process
An isothermal process is a type of thermodynamic process in which the temperature ''T'' of a system remains constant: Δ''T'' = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the sy ...
es,
where (pressure) varies with (volume) via
, so
#
Polytropic process
A polytropic process is a thermodynamic process that obeys the relation:
p V^ = C
where ''p'' is the pressure, ''V'' is volume, ''n'' is the polytropic index, and ''C'' is a constant. The polytropic process equation describes expansion and com ...
es,
See also
*
Entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
*
Reversible process (thermodynamics)
In thermodynamics, a reversible process is a process, involving a system and its surroundings, whose direction can be reversed by infinitesimal changes in some properties of the surroundings, such as pressure or temperature.
Throughout an enti ...
References
{{Reflist
Thermodynamic processes
Statistical mechanics