Quantum Philosophy
   HOME

TheInfoList



OR:

''Quantum Philosophy'' is a 2002 book by the physicist
Roland Omnès Roland Omnès (18 February 1931 – 2 August 2022) was a French physicist and author of several books that aimed to give non-scientists the information required to understand quantum mechanics. Biography Omnès was Professor Emeritus of Theor ...
, in which he aims to show the non-specialist reader how modern developments in
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
allow the recovery of our common sense view of the world.


Book contents

* Section I – a review of mathematics, epistemology and science from the classical to the early modern period. * Section II – a review of the ineluctable rise of formalism in mathematics and in fundamental physical science, which, Omnès argues, was not a choice, but was forced on researchers by the nature of the subject matter. * Section III – the central section of the book, in which the recovery of common sense, as outlined below, is presented. * Section IV – a short section of reflections on possible future steps.


Brief summary of Omnès' central argument

Omnès' project is not quite as it at first sounds. He is not trying to show that quantum mechanics itself can be understood in a common sense framework, quite the opposite. He argues that modern science has, necessarily, become more and more formal, and more and more remote from common sense, as it strives to make itself an accurate reflection of the physical world. But he argues that we have now come near enough to scaling the 'magnificent peaks' of the formal mathematics needed to describe reality for one thing to have finally become clear: it is now possible to demonstrate, formally, and starting from the underlying principles of quantum mechanics, that the laws of classical logic, classical probability and classical dynamics apply to objects at the macroscopic level. As Omnès makes explicit, this is the exact opposite of the classical
epistemological Epistemology is the branch of philosophy that examines the nature, origin, and limits of knowledge. Also called "the theory of knowledge", it explores different types of knowledge, such as propositional knowledge about facts, practical knowled ...
project. It has always, up to now, been necessary to access reality by first presupposing the laws of classical common sense. Now finally, we can enter the world either at the formal level, or at the classical level, and we find that each entails the other: experiment has led to the quantum formalism; the quantum formalism now, finally, allows the recovery of the framework of classical reasoning under which the experiments took place. Omnès emphasises throughout that no new principles, other than those described when quantum mechanics was developed in the 1920s, are needed. Moreover, some additional principles that seemed to be required then (such as
wavefunction collapse In various interpretations of quantum mechanics, wave function collapse, also called reduction of the state vector, occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to i ...
, or its slightly more formal sister, wavefunction reduction) are no longer needed. ''Classical behaviour can now be recovered in a system described entirely by a single,
unitary Unitary may refer to: Mathematics * Unitary divisor * Unitary element * Unitary group * Unitary matrix * Unitary morphism * Unitary operator * Unitary transformation * Unitary representation * Unitarity (physics) * ''E''-unitary inverse semigr ...
(time-reversible) wavefunction.'' The mathematical developments that allowed this progress have taken place in two fields:
quantum decoherence Quantum decoherence is the loss of quantum coherence. It involves generally a loss of information of a system to its environment. Quantum decoherence has been studied to understand how quantum systems convert to systems that can be expla ...
and the
consistent histories In quantum mechanics, the consistent histories or simply "consistent quantum theory" interpretation generalizes the complementarity aspect of the conventional Copenhagen interpretation. The approach is sometimes called decoherent histories a ...
approach to quantum mechanics. The consistent histories approach makes mathematically explicit which sets of classical questions can be consistently asked of a single quantum system, and, conversely, which sets of questions are fundamentally inconsistent, and thus meaningless when asked together. We can therefore demonstrate formally why it is that the questions that Einstein, Podolsky and Rosen assumed could be asked together, of a single quantum system, simply cannot be asked together. On the other hand, we can demonstrate that classical, logical reasoning often does apply, even to quantum experiments – but we can now be mathematically exact about the limits of classical logic. Quantum decoherence, on the other hand (in combination with the consistent histories approach), recovers classical behaviour at the macroscopic level. The formal mathematics of this approach allows us to demonstrate, finally, that is impossible (or rather, massively improbable) for a macroscopic
Schrödinger's cat In quantum mechanics, Schrödinger's cat is a thought experiment concerning quantum superposition. In the thought experiment, a hypothetical cat in a closed box may be considered to be simultaneously both alive and dead while it is unobserved, ...
to exist for longer than a minuscule time (related to the macroscopic energy dissipation time by a factor involving the square of the
Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
) in a quantum superposition of its and {{math, {{ket, dead . states. Even for a cat otherwise isolated from the rest of the Universe, ''and even with no observer present'', there are so many unknowns in the quantum state of the whole cat, that the relevant mathematics determine that only the normally observed classical states of the cat are at all probable, except over the very shortest of timescales. This reasoning is developed formally within measurement theory, and applies to any macroscopic, non-super cooled measuring device, whether or not there is an observer to watch it.


Collaborators

Omnès makes clear that others contributed materially to the research described in his book, including Robert Griffiths,
Murray Gell-Mann Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American theoretical physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the funda ...
, and
James Hartle James Burkett Hartle (August 17, 1939 – May 17, 2023) was an American theoretical physicist. He joined the faculty of the University of California, Santa Barbara in 1966, and was a member of the external faculty of the Santa Fe Institute. Hart ...
.


Bibliography

* ''Quantum Philosophy: Understanding and Interpreting Contemporary Science'' (English Edition: Princeton University Press, 1999; French Edition: Gallimard, 1994). Translated to Persian by R. Roknizadeh and published in 2016 in Iran. Popular physics books 2002 non-fiction books