Quantum Mirage
   HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, a quantum mirage is a peculiar result in quantum chaos. Every system of quantum
dynamical billiards A dynamical billiard is a dynamical system in which a particle alternates between free motion (typically as a straight line) and specular reflections from a boundary. When the particle hits the boundary it reflects from it Elastic collision, witho ...
will exhibit an effect called ''
scarring A scar (or scar tissue) is an area of fibrous tissue that replaces normal skin after an injury. Scars result from the biological process of wound repair in the skin, as well as in other organs, and tissues of the body. Thus, scarring is a nat ...
'', where the quantum probability density shows traces of the paths a classical
billiard ball A billiard ball is a small, hard ball used in cue sports, such as carom billiards, pool, and snooker. The number, type, diameter, color, and pattern of the balls differ depending upon the specific game being played. Various particular ball pro ...
would take. For an elliptical arena, the scarring is particularly pronounced at the foci, as this is the region where many classical trajectories converge. The scars at the foci are colloquially referred to as the "quantum mirage". The quantum mirage was first experimentally observed by Hari Manoharan, Christopher Lutz and Donald Eigler at the
IBM International Business Machines Corporation (using the trademark IBM), nicknamed Big Blue, is an American Multinational corporation, multinational technology company headquartered in Armonk, New York, and present in over 175 countries. It is ...
Almaden Research Center in San Jose, California in 2000. The effect is quite remarkable but in general agreement with prior work on the quantum mechanics of dynamical billiards in elliptical arenas.


Quantum corral

The mirage occurs at the foci of a quantum corral, a ring of atoms arranged in an arbitrary shape on a
substrate Substrate may refer to: Physical layers *Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached ** Substrate (aquatic environment), the earthy material that exi ...
. The quantum corral was demonstrated in 1993 by Lutz, Eigler, and Crommie using an elliptical ring of
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
atoms on a
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
surface using the tip of a low-temperature
scanning tunneling microscope A scanning tunneling microscope (STM) is a type of scanning probe microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in ...
to manipulate individual atoms. The
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
iron atoms reflected the surface electrons of the copper inside the ring into a wave pattern, as predicted by the theory of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
. Quantum corrals can be viewed as artificial atoms that even show similar chemical bonding properties as real atoms. The size and shape of the corral determine its quantum states, including the energy and distribution of the electrons. To make conditions suitable for the mirage the team at Almaden chose a configuration of the corral which concentrated the electrons at the foci of the ellipse. When scientists placed a magnetic cobalt atom at one focus of the corral, a mirage of the atom appeared at the other focus. Specifically the same electronic properties were present in the electrons surrounding both foci, even though the cobalt atom was only present at one focus. In scanning tunneling microscopy, an atomically sharp metal tip is advanced towards the atomically flat sample surface until electron tunneling out of the atom and into the advancing tip becomes effective. Using the sharp tip we can also arrange atoms adsorbed on the surface into unique shapes; for example, 48 adsorbed iron atoms on Cu(111) arranged into a 14.26 nm diameter circle. The electrons on the copper surface are trapped inside the circle formed by the iron atoms. A standing wave pattern emerges with a large peak at the center due to the constructive interference of electrons on the copper surface as they scatter off the adsorbed iron atoms.


Applications

IBM scientists are hoping to use quantum mirages to construct atomic scale processors in the future.


References


External links


"Quantum Mirage" may enable atom-scale circuits, IBM Research Almaden, 3rd Feb 2000

Theory of Quantum Corrals and Quantum Mirages
* Microscopic theory for quantum mirages in quantum corrals {{Use dmy dates, date=March 2018 Quantum electronics