HOME

TheInfoList



OR:

The pressure flow hypothesis, also known as the mass flow hypothesis, is the best-supported theory to explain the movement of
sap Sap is a fluid transported in xylem cells (vessel elements or tracheids) or phloem sieve tube elements of a plant. These cells transport water and nutrients throughout the plant. Sap is distinct from latex, resin, or cell sap; it is a separ ...
through the
phloem Phloem (, ) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as ''photosynthates'', in particular the sugar sucrose, to the rest of the plant. This transport process is c ...
. It was proposed by Ernst Münch, a German plant physiologist in 1930. A high concentration of organic substances, particularly sugar, inside
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
s of the phloem at a source, such as a
leaf A leaf ( : leaves) is any of the principal appendages of a vascular plant stem, usually borne laterally aboveground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", while the leaves, ste ...
, creates a diffusion gradient (osmotic gradient) that draws water into the cells from the adjacent
xylem Xylem is one of the two types of transport tissue in vascular plants, the other being phloem. The basic function of xylem is to transport water from roots to stems and leaves, but it also transports nutrients. The word ''xylem'' is derived from ...
. This creates
turgor Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall. It is also called ''hydrostatic pressure'', and is defined as the pressure in a fluid measured at a certain point within itself when at equilibri ...
pressure, also known as hydrostatic pressure, in the phloem. Movement of phloem sap occurs by bulk flow (mass flow) from ''sugar sources'' to ''sugar sinks''. The movement in phloem is bidirectional, whereas, in
xylem Xylem is one of the two types of transport tissue in vascular plants, the other being phloem. The basic function of xylem is to transport water from roots to stems and leaves, but it also transports nutrients. The word ''xylem'' is derived from ...
cells, it is unidirectional (upward). Because of this multi-directional flow, coupled with the fact that sap cannot move with ease between adjacent sieve-tubes, it is not unusual for sap in adjacent sieve-tubes to be flowing in opposite directions.


Sources and sinks

A sugar source is any part of the plant that is producing or releasing sugar. During the plant's growth period, usually during the spring, storage organs such as the
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the su ...
s are sugar sources, and the plant's many growing areas are sugar sinks. After the growth period, when the
meristem The meristem is a type of tissue found in plants. It consists of undifferentiated cells (meristematic cells) capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells conti ...
s are dormant, the leaves are sources, and storage organs are sinks. Developing
seed A seed is an embryonic plant enclosed in a protective outer covering, along with a food reserve. The formation of the seed is a part of the process of reproduction in seed plants, the spermatophytes, including the gymnosperm and angiospe ...
-bearing organs (such as
fruit In botany, a fruit is the seed-bearing structure in flowering plants that is formed from the ovary after flowering. Fruits are the means by which flowering plants (also known as angiosperms) disseminate their seeds. Edible fruits in particu ...
) are always sinks.


Mechanisms

While movement of water and minerals through the xylem is driven by negative pressures (tension) most of the time, movement through the phloem is driven by positive hydrostatic pressure. This process is termed ''translocation'', and is accomplished by a process called ''phloem loading'' and ''unloading''. Cells in a sugar source "load" a sieve-tube element by actively transporting solute molecules into it. This causes water to move into the sieve-tube element by
osmosis Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region o ...
, creating pressure that pushes the sap down the tube. In sugar sinks, cells actively transport solutes ''out'' of the sieve-tube elements, producing the exactly opposite effect. The gradient of sugar from source to sink causes pressure flow through the sieve tube toward the sink. The mechanisms are as follows: *Glucose is produced by
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
in the mesophyll cells of green leaves. Some glucose is used within the cells during respiration. The rest of the glucose is converted into non-reducing sugar i.e. sucrose. It has been shown that the sucrose concentration in sieve tubes in leaves is commonly between 10 and 30 percent whereas it forms only 0.5% solution in the photosynthesis cells. *The sucrose is actively transported to the companion cells of the smallest veins in the leaves. *The sucrose diffuses through the
plasmodesmata Plasmodesmata (singular: plasmodesma) are microscopic channels which traverse the cell walls of plant cells and some algal cells, enabling transport and communication between them. Plasmodesmata evolved independently in several lineages, and spec ...
from the companion cells to the sieve tube elements. As a result, concentration of sucrose increases in the sieve tube elements. *Water moves by osmosis from the nearby xylem in the same leaf vein. This increases the hydrostatic pressure of the sieve tube elements. *Hydrostatic pressure moves the sucrose and other substances through the sieve tube cells, towards a sink. *In the storage sinks, such as sugar beet root and sugar cane stem, sucrose is removed into
apoplast Inside a plant, the apoplast can mean the space outside of cell membranes, where material can diffuse freely; that is, the extracellular spaces. ''Apoplast '' can also refer especially to the continuum of cell walls of adjacent cells; fluid and ...
prior to entering the
symplast The symplast of a plant is the inner side of a cell membrane in which water and low-molecular-weight solutes can freely diffuse. Symplast cells have more than one nucleus. ''Symplast'' could also refer to the connection of the inner contents (c ...
of the sink. *Water moves out of the sieve tube cells by osmosis, lowering the hydrostatic pressure within them. Thus the pressure gradient is established as a consequence of entry of sugars in sieve elements at the source and removal of sucrose at the sink. The presence of sieve plates greatly increases the resistance along the pathway and results in the generation and maintenance of substantial pressure gradients in the sieve elements between source and sink. * The phloem sugar is removed by the cortex of both stem and root, and is consumed by
cellular respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
or else converted into starch. Starch is insoluble and exerts no osmotic effect. Consequently, the osmotic pressure of the contents of phloem decreases. Finally relatively pure water is left in the phloem and this is thought to leave by osmosis or be drawn back into nearby xylem vessels by suction of the transpiration pull. The pressure flow mechanism depends upon: * Turgor pressure * Difference of osmotic pressure gradient along the direction of flow between the source and the sink.


Evidence

There are different pieces of evidences that support the hypothesis. Firstly, there is an exudation of solution from the phloem when the stem is cut or punctured by th
Stylet
of an aphid, a classical experiment demonstrating the translocation function of phloem, indicating that the phloem sap is under pressure. Secondly, concentration gradients of organic solutes are proved to be present between the sink and the source. Thirdly, when viruses or growth chemicals are applied to a well-illuminated (actively photosynthesising) leaf, they are translocated downwards to the roots. Yet, when applied to shaded leaves, such downward translocation of chemicals does not occur, hence showing that diffusion is not a possible process involved in translocation.


Criticisms

Opposition or criticisms against the hypothesis are often voiced. Some argue that mass flow is a passive process while sieve tube vessels are supported by companion cells. Hence, the hypothesis neglects the living nature of phloem. Moreover, it is found that amino acids and sugars (examples of organic solutes) are translocated at different rates, which is contrary to the assumption in the hypothesis that all materials being transported would travel at uniform speed. Bi-directional movements of solutes in translocation process as well as the fact that translocation is heavily affected by changes in environmental conditions like temperature and metabolic inhibitors are two defects of the hypothesis. An objection leveled against the pressure flow mechanism is that it does not explain the phenomenon of bidirectional movement i.e. movement of different substances in opponent directions at the same time. The phenomenon of bidirectional movement can be demonstrated by applying two different substances at the same time to the phloem of a stem at two different points, and following their longitudinal movement along the stem. If the mechanism of translocation operates according to pressure flow hypothesis, bidirectional movement in a single sieve tube is not possible. Experiments to demonstrate bidirectional movement in a single sieve tube are technically very difficult to perform. Some experiments indicate that bidirectional movement may occur in a single sieve tube, whereas others do not.


Other theories

Some plants appear not to load phloem by active transport. In these cases a mechanism known as the polymer trap mechanism was proposed by
Robert Turgeon The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (''Hrōþiberhtaz''). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of '' Hruod'' ( non, Hróðr) "fame, glory, honou ...
.{{cite conference , author=Turgeon, R , year=1991 , title=Symplastic phloem loading and the sink-source transition in leaves: a model , book-title=Recent Advances Phloem Transport and Assimilate Compartmentation , editor1=VL Bonnemain , editor2=S Delrot , editor3=J Dainty , editor4=WJ Lucas In this case small sugars such as sucrose move into intermediary cells through narrow plasmodesmata, where they are polymerised to
raffinose Raffinose is a trisaccharide composed of galactose, glucose, and fructose. It can be found in beans, cabbage, brussels sprouts, broccoli, asparagus, other vegetables, and whole grains. Raffinose can be hydrolyzed to D-galactose and sucro ...
and other larger oligosaccharides. Now they are unable to move back, but can proceed through wider plasmodesmata into the sieve tube element. The symplastic phloem loading is confined mostly to plants in tropical rain forests and is seen as more primitive. The actively transported apoplastic phloem loading is viewed as more advanced, as it is found in the later-evolved plants, and particularly in those in temperate and arid conditions. This mechanism may therefore have allowed plants to colonise the cooler locations. Organic
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
s such as sugars,
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s, certain
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are require ...
s, and even messenger RNAs are transported in the phloem through sieve tube elements.


References

Ho, Y.K. (Manhattan, 2004.)''Advanced Level Biology for Hong Kong 3'',Page, 203. 4.http://bcs.whfreeman.com/webpub/Ektron/Hillis%20Principles%20of%20Life2e/Animated%20Tutorials/pol2e_at_2504_The_Pressure_Flow_Model/pol2e_at_2504_The_Pressure_Flow_Model.html Plant physiology