HOME

TheInfoList



OR:

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid. Many power stations contain one or more generators, a rotating machine that converts mechanical power into three-phase electric power. The relative motion between a magnetic field and a conductor creates an electric current. The energy source harnessed to turn the generator varies widely. Most power stations in the world burn fossil fuels such as
coal Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when ...
, oil, and
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
to generate electricity. Low-carbon power sources include
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced b ...
, and an increasing use of renewables such as solar,
wind Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few ...
, geothermal, and hydroelectric.


History

In early 1871 Belgian inventor Zénobe Gramme invented a generator powerful enough to produce power on a commercial scale for industry. In 1878, a hydroelectric power station was designed and built by William, Lord Armstrong at Cragside,
England England is a country that is part of the United Kingdom. It shares land borders with Wales to its west and Scotland to its north. The Irish Sea lies northwest and the Celtic Sea to the southwest. It is separated from continental Europe ...
. It used water from lakes on his estate to power Siemens dynamos. The electricity supplied power to lights, heating, produced hot water, ran an elevator as well as labor-saving devices and farm buildings. In January 1882 the world's first public coal-fired power station, the Edison Electric Light Station, was built in London, a project of Thomas Edison organized by Edward Johnson. A Babcock & Wilcox boiler powered a steam engine that drove a generator. This supplied electricity to premises in the area that could be reached through the culverts of the viaduct without digging up the road, which was the monopoly of the gas companies. The customers included the City Temple and the Old Bailey. Another important customer was the Telegraph Office of the
General Post Office The General Post Office (GPO) was the state postal system and telecommunications carrier of the United Kingdom until 1969. Before the Acts of Union 1707, it was the postal system of the Kingdom of England, established by Charles II in 1660. ...
, but this could not be reached through the culverts. Johnson arranged for the supply cable to be run overhead, via Holborn Tavern and Newgate. In September 1882 in New York, the Pearl Street Station was established by Edison to provide electric lighting in the lower Manhattan Island area. The station ran until destroyed by fire in 1890. The station used reciprocating
steam engine A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be ...
s to turn direct-current generators. Because of the DC distribution, the service area was small, limited by voltage drop in the feeders. In 1886
George Westinghouse George Westinghouse Jr. (October 6, 1846 – March 12, 1914) was an American entrepreneur and engineer based in Pennsylvania who created the railway air brake and was a pioneer of the electrical industry, receiving his first patent at the age ...
began building an alternating current system that used a
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
to step up voltage for long-distance transmission and then stepped it back down for indoor lighting, a more efficient and less expensive system which is similar to modern systems. The
war of the currents The war of the currents was a series of events surrounding the introduction of competing electric power transmission systems in the late 1880s and early 1890s. It grew out of two lighting systems developed in the late 1870s and early 1880s; arc ...
eventually resolved in favor of AC distribution and utilization, although some DC systems persisted to the end of the 20th century. DC systems with a service radius of a mile (kilometer) or so were necessarily smaller, less efficient of fuel consumption, and more labor-intensive to operate than much larger central AC generating stations. AC systems used a wide range of frequencies depending on the type of load; lighting load using higher frequencies, and traction systems and heavy motor load systems preferring lower frequencies. The economics of central station generation improved greatly when unified light and power systems, operating at a common frequency, were developed. The same generating plant that fed large industrial loads during the day, could feed commuter railway systems during rush hour and then serve lighting load in the evening, thus improving the system load factor and reducing the cost of electrical energy overall. Many exceptions existed, generating stations were dedicated to power or light by the choice of frequency, and rotating frequency changers and rotating converters were particularly common to feed electric railway systems from the general lighting and power network. Throughout the first few decades of the 20th century central stations became larger, using higher steam pressures to provide greater efficiency, and relying on interconnections of multiple generating stations to improve reliability and cost. High-voltage AC transmission allowed hydroelectric power to be conveniently moved from distant waterfalls to city markets. The advent of the steam turbine in central station service, around 1906, allowed great expansion of generating capacity. Generators were no longer limited by the power transmission of belts or the relatively slow speed of reciprocating engines, and could grow to enormous sizes. For example, Sebastian Ziani de Ferranti planned what would have reciprocating steam engine ever built for a proposed new central station, but scrapped the plans when turbines became available in the necessary size. Building power systems out of central stations required combinations of engineering skill and financial acumen in equal measure. Pioneers of central station generation include
George Westinghouse George Westinghouse Jr. (October 6, 1846 – March 12, 1914) was an American entrepreneur and engineer based in Pennsylvania who created the railway air brake and was a pioneer of the electrical industry, receiving his first patent at the age ...
and Samuel Insull in the United States, Ferranti and
Charles Hesterman Merz Charles Hesterman Merz (5 October 1874 – 14 or 15 October 1940) was a British electrical engineer who pioneered the use of high-voltage three-phase AC power distribution in the United Kingdom, building a system in the North East of England i ...
in UK, and many others.


Thermal power stations

In thermal power stations, mechanical power is produced by a
heat engine In thermodynamics and engineering, a heat engine is a system that converts heat to mechanical energy, which can then be used to do mechanical work. It does this by bringing a working substance from a higher state temperature to a lower stat ...
that transforms thermal energy, often from
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
of a
fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy b ...
, into rotational energy. Most thermal power stations produce steam, so they are sometimes called steam power stations. Not all thermal energy can be transformed into mechanical power, according to the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unle ...
; therefore, there is always heat lost to the environment. If this loss is employed as useful heat, for industrial processes or
district heating District heating (also known as heat networks or teleheating) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating ...
, the power plant is referred to as a
cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
power plant or CHP (combined heat-and-power) plant. In countries where district heating is common, there are dedicated heat plants called
heat-only boiler station A heating plant, also called a physical plant, or steam plant, generates thermal energy in the form of steam for use in district heating applications. Unlike combined heat and power installations which produce thermal energy as a by-product ...
s. An important class of power stations in the Middle East uses by-product heat for the desalination of water. The efficiency of a thermal power cycle is limited by the maximum working fluid temperature produced. The efficiency is not directly a function of the fuel used. For the same steam conditions, coal-, nuclear- and gas power plants all have the same theoretical efficiency. Overall, if a system is on constantly (base load) it will be more efficient than one that is used intermittently (peak load). Steam turbines generally operate at higher efficiency when operated at full capacity. Besides use of reject heat for process or district heating, one way to improve overall efficiency of a power plant is to combine two different thermodynamic cycles in a combined cycle plant. Most commonly, exhaust gases from a gas turbine are used to generate steam for a boiler and a steam turbine. The combination of a "top" cycle and a "bottom" cycle produces higher overall efficiency than either cycle can attain alone. In 2018, Inter RAO UES an
State Grid
planned to build an 8-GW thermal power plant, which's the largest coal-fired power plant construction project in
Russia Russia (, , ), or the Russian Federation, is a transcontinental country spanning Eastern Europe and Northern Asia. It is the largest country in the world, with its internationally recognised territory covering , and encompassing one-ei ...
.


Classification


By heat source

* Fossil-fuel power stations may also use a steam turbine generator or in the case of natural gas-fired power plants may use a combustion turbine. A coal-fired power station produces heat by burning coal in a steam boiler. The steam drives a steam turbine and generator that then produces
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describe ...
. The waste products of combustion include ash,
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic a ...
, nitrogen oxides, and
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
. Some of the gases can be removed from the waste stream to reduce pollution. * Nuclear power plants use the heat generated in a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
's core (by the fission process) to create steam which then operates a steam turbine and generator. About 20 percent of electric generation in the USA is produced by nuclear power plants. * Geothermal power plants use steam extracted from hot underground rocks. These rocks are heated by the decay of radioactive material in the Earth's core. * Biomass-fuelled power plants may be fuelled by waste from sugar cane,
municipal solid waste Municipal solid waste (MSW), commonly known as trash or garbage in the United States and rubbish in Britain, is a waste type consisting of everyday items that are discarded by the public. "Garbage" can also refer specifically to food waste ...
, landfill
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
, or other forms of biomass. * In integrated steel mills, blast furnace exhaust gas is a low-cost, although low-energy-density, fuel. * Waste heat from industrial processes is occasionally concentrated enough to use for power generation, usually in a steam boiler and turbine. * Solar thermal electric plants use sunlight to boil water and produce steam which turns the generator.


By prime mover

A prime mover is a machine that converts energy of various forms into energy of motion. * Steam turbine plants use the dynamic pressure generated by expanding steam to turn the blades of a turbine. Almost all large non-hydro plants use this system. About 90 percent of all electric power produced in the world is through use of steam turbines. * Gas turbine plants use the dynamic pressure from flowing gases (air and combustion products) to directly operate the turbine. Natural-gas fuelled (and oil fueled) combustion turbine plants can start rapidly and so are used to supply "peak" energy during periods of high demand, though at higher cost than base-loaded plants. These may be comparatively small units, and sometimes completely unmanned, being remotely operated. This type was pioneered by the UK, Princetown being the world's first, commissioned in 1959. * Combined cycle plants have both a gas turbine fired by natural gas, and a steam boiler and steam turbine which use the hot exhaust gas from the gas turbine to produce electricity. This greatly increases the overall efficiency of the plant, and many new baseload power plants are combined cycle plants fired by natural gas. * Internal combustion
reciprocating engine A reciprocating engine, also often known as a piston engine, is typically a heat engine that uses one or more reciprocating pistons to convert high temperature and high pressure into a rotating motion. This article describes the common fe ...
s are used to provide power for isolated communities and are frequently used for small cogeneration plants. Hospitals, office buildings, industrial plants, and other critical facilities also use them to provide backup power in case of a power outage. These are usually fuelled by diesel oil, heavy oil,
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon d ...
, and
landfill gas Landfill gas is a mix of different gases created by the action of microorganisms within a landfill as they decompose organic waste, including for example, food waste and paper waste. Landfill gas is approximately forty to sixty percent methane ...
. *
Microturbines A gas turbine, also called a combustion turbine, is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas generator or core) and are, in the directi ...
, Stirling engine and internal combustion reciprocating engines are low-cost solutions for using opportunity fuels, such as
landfill gas Landfill gas is a mix of different gases created by the action of microorganisms within a landfill as they decompose organic waste, including for example, food waste and paper waste. Landfill gas is approximately forty to sixty percent methane ...
, digester gas from water treatment plants and waste gas from oil production.


By duty

Power plants that can be dispatched (scheduled) to provide energy to a system include: * Base load power plants run nearly continually to provide that component of system load that doesn't vary during a day or week. Baseload plants can be highly optimized for low fuel cost, but may not start or stop quickly during changes in system load. Examples of base-load plants would include large modern coal-fired and nuclear generating stations, or hydro plants with a predictable supply of water. * Peaking power plants meet the daily peak load, which may only be for one or two hours each day. While their incremental operating cost is always higher than base load plants, they are required to ensure security of the system during load peaks. Peaking plants include simple cycle gas turbines and reciprocating internal combustion engines, which can be started up rapidly when system peaks are predicted. Hydroelectric plants may also be designed for peaking use. * Load following power plants can economically follow the variations in the daily and weekly load, at lower cost than peaking plants and with more flexibility than baseload plants. Non-dispatchable plants include such sources as wind and solar energy; while their long-term contribution to system energy supply is predictable, on a short-term (daily or hourly) base their energy must be used as available since generation cannot be deferred. Contractual arrangements ("take or pay") with independent power producers or system interconnections to other networks may be effectively non-dispatchable.


Cooling towers

All thermal power plants produce
waste heat Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utilit ...
energy as a byproduct of the useful electrical energy produced. The amount of waste heat energy equals or exceeds the amount of energy converted into useful electricity. Gas-fired power plants can achieve as much as 65% conversion efficiency, while coal and oil plants achieve around 30–49%. The waste heat produces a temperature rise in the atmosphere, which is small compared to that produced by greenhouse-gas emissions from the same power plant. Natural draft wet
cooling tower A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat an ...
s at many nuclear power plants and large fossil-fuel-fired power plants use large hyperboloid chimney-like structures (as seen in the image at the right) that release the waste heat to the ambient atmosphere by the evaporation of water. However, the mechanical induced-draft or forced-draft wet cooling towers in many large thermal power plants, nuclear power plants, fossil-fired power plants, petroleum refineries, petrochemical plants, geothermal, biomass and waste-to-energy plants use fans to provide air movement upward through down coming water and are not hyperboloid chimney-like structures. The induced or forced-draft cooling towers are typically rectangular, box-like structures filled with a material that enhances the mixing of the upflowing air and the down-flowing water. (Includes cooling tower material balance for evaporation emissions and blowdown effluents. Available in many university libraries) In areas with restricted water use, a dry cooling tower or directly air-cooled radiators may be necessary, since the cost or environmental consequences of obtaining make-up water for evaporative cooling would be prohibitive. These coolers have lower efficiency and higher energy consumption to drive fans, compared to a typical wet, evaporative cooling tower.


Air-cooled condenser (ACC)

Power plants can use an air-cooled condenser, traditionally in areas with a limited or expensive water supply. Air-cooled condensers serve the same purpose as a cooling tower (heat dissipation) without using water. They consume additional auxiliary power and thus may have a higher carbon footprint compared to a traditional cooling tower.


Once-through cooling systems

Electric companies often prefer to use cooling water from the ocean or a lake, river, or cooling pond instead of a cooling tower. This single pass or once-through cooling system can save the cost of a cooling tower and may have lower energy costs for pumping cooling water through the plant's heat exchangers. However, the waste heat can cause thermal pollution as the water is discharged. Power plants using natural bodies of water for cooling are designed with mechanisms such as fish screens, to limit intake of organisms into the cooling machinery. These screens are only partially effective and as a result billions of fish and other aquatic organisms are killed by power plants each year. For example, the cooling system at the
Indian Point Energy Center Indian Point Energy Center (I.P.E.C.) is a three-unit nuclear power plant station located in Buchanan, just south of Peekskill, in Westchester County, New York. It sits on the east bank of the Hudson River, about north of Midtown Manhattan. T ...
in New York kills over a billion fish eggs and larvae annually
Power Plant consultants in India
A further environmental impact is that aquatic organisms which adapt to the warmer discharge water may be injured if the plant shuts down in cold weather. Water consumption by power stations is a developing issue. In recent years, recycled wastewater, or
grey water Greywater (or grey water, sullage, also spelled gray water in the United States) refers to domestic wastewater generated in households or office buildings from streams without fecal contamination, i.e., all streams except for the wastewater fro ...
, has been used in cooling towers. The Calpine Riverside and the Calpine Fox power stations in
Wisconsin Wisconsin () is a state in the upper Midwestern United States. Wisconsin is the 25th-largest state by total area and the 20th-most populous. It is bordered by Minnesota to the west, Iowa to the southwest, Illinois to the south, Lake M ...
as well as the Calpine Mankato power station in
Minnesota Minnesota () is a state in the upper midwestern region of the United States. It is the 12th largest U.S. state in area and the 22nd most populous, with over 5.75 million residents. Minnesota is home to western prairies, now given over t ...
are among these facilities.


Power from renewable energy

Power stations can generate electrical energy from renewable energy sources.


Hydroelectric power station

In a hydroelectric power station water flows through turbines using
hydropower Hydropower (from el, ὕδωρ, "water"), also known as water power, is the use of falling or fast-running water to produce electricity or to power machines. This is achieved by converting the gravitational potential or kinetic energy of ...
to generate
hydroelectricity Hydroelectricity, or hydroelectric power, is electricity generated from hydropower (water power). Hydropower supplies one sixth of the world's electricity, almost 4500 TWh in 2020, which is more than all other renewable sources combined an ...
. Power is captured from the gravitational force of water falling through penstocks to water turbines connected to generators. The amount of power available is a combination of height and water flow. A wide range of Dams may be built to raise the water level, and create a lake for storing water. Hydropower is produced in 150 countries, with the Asia-Pacific region generating 32 percent of global hydropower in 2010.
China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's List of countries and dependencies by population, most populous country, with a Population of China, population exceeding 1.4 billion, slig ...
is the largest hydroelectricity producer, with 721 terawatt-hours of production in 2010, representing around 17 percent of domestic electricity use.


Solar

Solar energy can be turned into electricity either directly in solar cells, or in a concentrating solar power plant by focusing the light to run a heat engine. A solar photovoltaic power plant converts sunlight into direct current electricity using the photoelectric effect. Inverters change the direct current into alternating current for connection to the electrical grid. This type of plant does not use rotating machines for energy conversion. Solar thermal power plants use either parabolic troughs or heliostats to direct sunlight onto a pipe containing a heat transfer fluid, such as oil. The heated oil is then used to boil water into steam, which turns a turbine that drives an electrical generator. The central tower type of solar thermal power plant uses hundreds or thousands of mirrors, depending on size, to direct sunlight onto a receiver on top of a tower. The heat is used to produce steam to turn turbines that drive electrical generators.


Wind

Wind turbine A wind turbine is a device that converts the kinetic energy of wind into electrical energy. Hundreds of thousands of large turbines, in installations known as wind farms, now generate over 650 gigawatts of power, with 60 GW added each year. ...
s can be used to generate electricity in areas with strong, steady winds, sometimes offshore. Many different designs have been used in the past, but almost all modern turbines being produced today use a three-bladed, upwind design. Grid-connected wind turbines now being built are much larger than the units installed during the 1970s. They thus produce power more cheaply and reliably than earlier models. With larger turbines (on the order of one megawatt), the blades move more slowly than older, smaller, units, which makes them less visually distracting and safer for birds.


Marine

Marine energy or marine power (also sometimes referred to as ocean energy or ocean power) refers to the energy carried by ocean waves,
tide Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another. Tide tables ...
s, salinity, and ocean temperature differences. The movement of water in the world's oceans creates a vast store of
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acce ...
, or energy in motion. This energy can be harnessed to generate electricity to power homes, transport and industries. The term marine energy encompasses both wave power — power from surface waves, and
tidal power Tidal power or tidal energy is harnessed by converting energy from tides into useful forms of power, mainly electricity using various methods. Although not yet widely used, tidal energy has the potential for future electricity generation. ...
— obtained from the kinetic energy of large bodies of moving water. Offshore wind power is not a form of marine energy, as wind power is derived from the
wind Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few ...
, even if the
wind turbine A wind turbine is a device that converts the kinetic energy of wind into electrical energy. Hundreds of thousands of large turbines, in installations known as wind farms, now generate over 650 gigawatts of power, with 60 GW added each year. ...
s are placed over water. The
ocean The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wor ...
s have a tremendous amount of energy and are close to many if not most concentrated populations. Ocean energy has the potential of providing a substantial amount of new renewable energy around the world.


Osmosis

Salinity gradient energy is called pressure-retarded osmosis. In this method, seawater is pumped into a pressure chamber that is at a pressure lower than the difference between the pressures of saline water and fresh water. Freshwater is also pumped into the pressure chamber through a membrane, which increases both the volume and pressure of the chamber. As the pressure differences are compensated, a turbine is spun creating energy. This method is being specifically studied by the Norwegian utility Statkraft, which has calculated that up to 25 TWh/yr would be available from this process in Norway. Statkraft has built the world's first prototype osmotic power plant on the Oslo fjord which was opened on 24 November 2009. In January 2014 however Statkraft announced not to continue this pilot.


Biomass

Biomass energy can be produced from combustion of waste green material to heat water into steam and drive a steam turbine. Bioenergy can also be processed through a range of temperatures and pressures in gasification,
pyrolysis The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements '' ...
or
torrefaction Torrefaction of biomass, e.g., wood or grain, is a mild form of pyrolysis at temperatures typically between 200 and 320 °C. Torrefaction changes biomass properties to provide a better fuel quality for combustion and gasification applications. ...
reactions. Depending on the desired end product, these reactions create more energy-dense products ( syngas, wood pellets, biocoal) that can then be fed into an accompanying engine to produce electricity at a much lower emission rate when compared with open burning.


Storage power stations

It is possible to store energy and produce electrical power at a later time as in pumped-storage hydroelectricity, thermal energy storage, flywheel energy storage, battery storage power station and so on.


Pumped storage

The world's largest form of storage for excess electricity, pumped-storage is a reversible hydroelectric plant. They are a net consumer of energy but provide storage for any source of electricity, effectively smoothing peaks and troughs in electricity supply and demand. Pumped storage plants typically use "spare" electricity during off peak periods to pump water from a lower reservoir to an upper reservoir. Because the pumping takes place "off peak", electricity is less valuable than at peak times. This less valuable "spare" electricity comes from uncontrolled wind power and
base load The base load (also baseload) is the minimum level of demand on an electrical grid over a span of time, for example, one week. This demand can be met by unvarying power plants, dispatchable generation, or by a collection of smaller intermittent e ...
power plants such as coal, nuclear and geothermal, which still produce power at night even though demand is very low. During daytime peak demand, when electricity prices are high, the storage is used for
peaking power Peaking power plants, also known as peaker plants, and occasionally just "peakers", are power plants that generally run only when there is a high demand, known as peak demand, for electricity. Because they supply power only occasionally, the power ...
, where water in the upper reservoir is allowed to flow back to a lower reservoir through a turbine and generator. Unlike coal power stations, which can take more than 12 hours to start up from cold, a hydroelectric generator can be brought into service in a few minutes, ideal to meet a peak load demand. Two substantial pumped storage schemes are in South Africa,
Palmiet Pumped Storage Scheme The Palmiet Pumped Storage Scheme consists of two turbine units located upstream of the Kogelberg Dam on the Palmiet River near Cape Town, South Africa. The pumped-storage hydroelectricity plant is capable of responding to a surge in peak power ...
and another in the Drakensberg, Ingula Pumped Storage Scheme.


Typical power output

The power generated by a power station is measured in multiples of the
watt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James ...
, typically megawatts (106 watts) or gigawatts (109 watts). Power stations vary greatly in capacity depending on the type of power plant and on historical, geographical and economic factors. The following examples offer a sense of the scale. Many of the largest operational onshore wind farms are located in China. As of 2022, the Roscoe Wind Farm is the largest onshore wind farm in the world, producing 8000 MW of power, followed by the Zhang Jiakou (3000 MW). As of January 2022, the Hornsea Wind Farm in
United Kingdom The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom (UK) or Britain, is a country in Europe, off the north-western coast of the continental mainland. It comprises England, Scotland, Wales and ...
is the largest offshore wind farm in the world at 1218 MW, followed by Walney Wind Farm in
United Kingdom The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom (UK) or Britain, is a country in Europe, off the north-western coast of the continental mainland. It comprises England, Scotland, Wales and ...
at 1026 MW. , the largest photovoltaic (PV) power plants in the world are led by Bhadla Solar Park in India, rated at 2245 MW. Solar thermal power stations in the U.S. have the following output: : Ivanpah Solar Power Facility is the largest of the country with an output of 392 MW Large coal-fired, nuclear, and hydroelectric power stations can generate hundreds of megawatts to multiple gigawatts. Some examples: :The
Koeberg Nuclear Power Station Koeberg nuclear power station is a nuclear power station in South Africa. It is currently the only one on the entire African continent. It is located 30 km north of Cape Town, near Melkbosstrand on the west coast of South Africa. Koeberg ...
in South Africa has a rated capacity of 1860 megawatts. :The coal-fired Ratcliffe-on-Soar Power Station in the UK has a rated capacity of 2 gigawatts. :The
Aswan Dam The Aswan Dam, or more specifically since the 1960s, the Aswan High Dam, is one of the world's largest embankment dams, which was built across the Nile in Aswan, Egypt, between 1960 and 1970. Its significance largely eclipsed the previous Aswan ...
hydro-electric plant in Egypt has a capacity of 2.1 gigawatts. :The Three Gorges Dam hydro-electric plant in China has a capacity of 22.5 gigawatts. Gas turbine power plants can generate tens to hundreds of megawatts. Some examples: :The Indian Queens simple-cycle, or open cycle gas turbine (OCGT), peaking power station in Cornwall UK, with a single gas turbine is rated 140 megawatts. :The
Medway Power Station Medway Power Station is a 735 megawatts gas-fired power station on the Isle of Grain in Medway next to the River Medway. History The station is run by Scottish & Southern Energy under the name Medway Power Ltd. It was built by Marubeni (Japanes ...
, a combined-cycle gas turbine (CCGT) power station in Kent, UK with two gas turbines and one steam turbine, is rated 700 megawatts. The rated capacity of a power station is nearly the maximum electrical power that the power station can produce. Some power plants are run at almost exactly their rated capacity all the time, as a non-load-following base load power plant, except at times of scheduled or unscheduled maintenance. However, many power plants usually produce much less power than their rated capacity. In some cases a power plant produces much less power than its rated capacity because it uses an intermittent energy source. Operators try to pull maximum available power from such power plants, because their marginal cost is practically zero, but the available power varies widely—in particular, it may be zero during heavy storms at night. In some cases operators deliberately produce less power for economic reasons. The cost of fuel to run a load following power plant may be relatively high, and the cost of fuel to run a peaking power plant is even higher—they have relatively high marginal costs. Operators keep power plants turned off ("operational reserve") or running at minimum fuel consumption ("spinning reserve") most of the time. Operators feed more fuel into load following power plants only when the demand rises above what lower-cost plants (i.e., intermittent and base load plants) can produce, and then feed more fuel into peaking power plants only when the demand rises faster than the load following power plants can follow.


Output metering

Not all of the generated power of a plant is necessarily delivered into a distribution system. Power plants typically also use some of the power themselves, in which case the generation output is classified into ''gross generation'', and ''net generation''. Gross generation or gross electric output is the total amount of electricity generated by a power plant over a specific period of time. It is measured at the generating terminal and is measured in kilowatt-hours (kW·h),
megawatt-hours A kilowatt-hour (unit symbol: kW⋅h or kW h; commonly written as kWh) is a unit of energy: one kilowatt of power for one hour. In terms of SI derived units with special names, it equals 3.6 megajoules (MJ). Kilowatt-hours are a common bi ...
(MW·h),
gigawatt-hours A kilowatt-hour ( unit symbol: kW⋅h or kW h; commonly written as kWh) is a unit of energy: one kilowatt of power for one hour. In terms of SI derived units with special names, it equals 3.6 megajoules (MJ). Kilowatt-hours are a common bil ...
(GW·h) or for the largest power plants terawatt-hours (TW·h). It includes the electricity used in the plant auxiliaries and in the transformers. :Gross generation = net generation + usage within the plant (also known as in-house loads) Net generation is the amount of
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describe ...
generated by a power plant that is transmitted and distributed for consumer use. Net generation is less than the total gross power generation as some power produced is consumed within the plant itself to power auxiliary equipment such as pumps, motors and pollution control devices. Thus :Net generation = gross generation − usage within the plant ( in-house loads)


Operations

Operating staff at a power station have several duties. Operators are responsible for the safety of the work crews that frequently do repairs on the mechanical and electrical equipment. They maintain the equipment with periodic inspections and log temperatures, pressures and other important information at regular intervals. Operators are responsible for starting and stopping the generators depending on need. They are able to synchronize and adjust the voltage output of the added generation with the running electrical system, without upsetting the system. They must know the electrical and mechanical systems to troubleshoot problems in the facility and add to the reliability of the facility. Operators must be able to respond to an emergency and know the procedures in place to deal with it.


See also

*
Cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
*
Cooling tower A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat an ...
* Cost of electricity by source *
District heating District heating (also known as heat networks or teleheating) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating ...
*
Electricity generation Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery ( transmission, distribution, etc.) to end users or its s ...
*
Environmental impact of electricity generation Electric power systems consist of generation plants of different energy sources, transmission networks, and distribution lines. Each of these components can have environmental impacts at multiple stages of their development and use including in ...
* Flue-gas stack * Fossil-fuel power station * Geothermal electricity *
Gravitation water vortex power plant The gravitation water vortex power plant is a type of micro hydro vortex turbine system which is capable of converting energy in a moving fluid to rotational energy using a low hydraulic head of . The technology is based on a round basin with a ce ...
* Grid-tied electrical system mini-power plants * List of largest power stations in the world * List of power stations *
List of thermal power station failures This list is concerned with severe and abnormal power outages which caused major power failures due to damage to a single thermal power station itself or its connections which take a significant amount of time - months or years to repair. Whilst ...
* Nuclear power plant *
Plant efficiency The efficiency of a plant is the percentage of the total energy content of a power plant's fuel that is converted into electricity. The remaining energy is usually lost to the environment as heat unless it is used for district heating. R ...
* Unit commitment problem * Virtual power plant


References


External links


Identification System for Power Stations (KKS)



Database of carbon emissions of power plants worldwide (Carbon Monitoring For Action: CARMA)Net vs Gross Output Measurement
''Archived fro
the original
(pdf) on 21 October 2012''
Measuring power generation
''Archived fro
the original
(pdf) on 2 October 2012'' {{DEFAULTSORT:Power Station Chemical process engineering Infrastructure