HOME

TheInfoList



OR:

A porous medium or a porous material is a material containing pores (voids). The skeletal portion of the material is often called the "matrix" or "frame". The pores are typically filled with a fluid ( liquid or
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
). The skeletal material is usually a
solid Solid is one of the four fundamental states of matter (the others being liquid, gas, and plasma). The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural ...
, but structures like
foam Foams are materials formed by trapping pockets of gas in a liquid or solid. A bath sponge and the head on a glass of beer are examples of foams. In most foams, the volume of gas is large, with thin films of liquid or solid separating the ...
s are often also usefully analyzed using concept of porous media. A porous medium is most often characterised by its
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measur ...
. Other properties of the medium (e.g. permeability,
tensile strength Ultimate tensile strength (UTS), often shortened to tensile strength (TS), ultimate strength, or F_\text within equations, is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials t ...
, electrical conductivity,
tortuosity Tortuosity is widely used as a critical parameter to predict transport properties of porous media, such as rocks and soils. But unlike other standard microstructural properties, the concept of tortuosity is vague with multiple definitions and vari ...
) can sometimes be derived from the respective properties of its constituents (solid matrix and fluid) and the media porosity and pores structure, but such a derivation is usually complex. Even the concept of porosity is only straightforward for a poroelastic medium. Often both the solid matrix and the pore network (also known as the pore space) are continuous, so as to form two interpenetrating continua such as in a
sponge Sponges, the members of the phylum Porifera (; meaning 'pore bearer'), are a basal animal clade as a sister of the diploblasts. They are multicellular organisms that have bodies full of pores and channels allowing water to circulate throug ...
. However, there is also a concept of closed porosity and
effective porosity Effective porosity is most commonly considered to represent the porosity of a rock or sediment available to contribute to fluid flow through the rock or sediment, or often in terms of "flow to a borehole". Porosity that is not considered "effectiv ...
, i.e. the pore space accessible to flow. Many natural substances such as rocks and
soil Soil, also commonly referred to as earth or dirt Dirt is an unclean matter, especially when in contact with a person's clothes, skin, or possessions. In such cases, they are said to become dirty. Common types of dirt include: * Debri ...
(e.g.
aquifer An aquifer is an underground layer of water-bearing, permeable rock, rock fractures, or unconsolidated materials ( gravel, sand, or silt). Groundwater from aquifers can be extracted using a water well. Aquifers vary greatly in their characteris ...
s, petroleum reservoirs),
zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These p ...
s,
biological tissue In biology, tissue is a biological organizational level between cells and a complete organ. A tissue is an ensemble of similar cells and their extracellular matrix from the same origin that together carry out a specific function. Organs are th ...
s (e.g. bones, wood, cork), and man made materials such as
cement A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel ( aggregate) together. Cement mi ...
s and
ceramic A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain ...
s can be considered as porous media. Many of their important properties can only be rationalized by considering them to be porous media. The concept of porous media is used in many areas of applied science and engineering: filtration,
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to object ...
( acoustics,
geomechanics Geomechanics (from the Greek prefix ''geo-'' meaning "earth"; and "mechanics") is the study of the mechanical state of the earth's crust and the processes occurring in it under the influence of natural physical factors. It involves the study of th ...
,
soil mechanics Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids (usually air and wat ...
,
rock mechanics Rock mechanics is a theoretical and applied science of the mechanical behavior of rock and rock masses; compared to geology, it is that branch of mechanics concerned with the response of rock and rock masses to the force fields of their physical env ...
),
engineering Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more speciali ...
( petroleum engineering,
bioremediation Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi, and plants), living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluent ...
, construction engineering),
geosciences Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four sphere ...
( hydrogeology, petroleum geology,
geophysics Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' so ...
), biology and
biophysics Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations. ...
, material science. Two important current fields of application for porous materials are energy conversion and energy storage, where porous materials are essential for superpacitors, fuel cells, and batteries.


Microscopic and macroscopic

At the microscopic and macroscopic levels, porous media can be classified. At the microscopic scale, the structure is represented statistically by the distribution of pore sizes, the degree of pore interconnection and orientation, the proportion of dead pores, etc. The macroscopic technique makes use of bulk properties that have been averaged at scales far bigger than pore size. Depending on the goal, these two techniques are frequently employed since they are complimentary. It is obvious that the microscopic description is required to comprehend surface phenomena like the adsorption of macromolecules from polymer solutions and the blocking of pores, whereas the macroscopic approach is frequently quite sufficient for process design where fluid flow, heat, and
mass transfer Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration ...
are of highest concern. and the molecular dimensions are significantly smaller than pore size of the porous system.


Fluid flow through porous media

Fluid flow through porous media is a subject of common interest and has emerged a separate field of study. The study of more general behaviour of porous media involving deformation of the solid frame is called poromechanics. The theory of porous flows has applications in inkjet printing and nuclear waste disposal technologies, among others. Numerous factors influence fluid flow in porous media, and its fundamental function is to expend energy and create fluid via the wellbore. In flow mechanics via porous medium, the connection between energy and flow rate becomes the most significant issue. The most fundamental law that characterizes this connection is
Darcy's law Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of ...
.


Pore structure models

A representation of the void phase that exists inside porous materials using a set or network of pores. It serves as a structural foundation for the prediction of transport parameters and is employed in the context of pore structure characterisation. There are many idealized models of pore structures. They can be broadly divided into three categories: * networks of
capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
* arrays of solid particles (e.g.,
random close pack Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the containe ...
of spheres) * trimodal Porous materials often have a fractal-like structure, having a pore surface area that seems to grow indefinitely when viewed with progressively increasing resolution. Mathematically, this is described by assigning the pore surface a Hausdorff dimension greater than 2. Experimental methods for the investigation of pore structures include
confocal microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser confocal scanning microscopy (LCSM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a s ...
and x-ray tomography.


Laws for porous materials

One of the Laws for porous materials is the generalized Murray's law. The generalized Murray’s law is based on optimizing mass transfer by minimizing transport resistance in pores with a given volume, and can be applicable for optimizing mass transfer involving mass variations and chemical reactions involving flow processes, molecule or ion diffusion. For connecting a parent pipe with radius of ''r0'' to many children pipes with radius of ''ri'' , the formula of generalized Murray's law is: r_o^a=\sum_^Nr_i^a, where the ''X'' is the ratio of mass variation during mass transfer in the parent pore, the exponent ''α'' is dependent on the type of the transfer. For laminar flow ''α'' =3; for turbulent flow ''α'' =7/3; for molecule or ionic diffusion ''α'' =2; etc.


See also

* Cenocell * Nanoporous materials * NMR in porous media *
Percolation theory In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnecte ...
*
Percolation threshold The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a ...
*
Reticulated foam Reticulated foam is a very porous, low density solid foam. 'Reticulated' means like a net. Reticulated foams are extremely open foams i.e. there are few, if any, intact bubbles or cell windows. In contrast, the foam formed by soap bubbles is compo ...
* Filtration * Poromechanics * Reactive transport * Permeability


References


Further reading

*J. Bear; (1972)'' Dynamics of Fluids in Porous Media.'' (Elsevier, New York)


External links


Defining Permeability

Tailoring porous media to control permeability


* ttp://perminc.com/resources/fundamentals-of-fluid-flow-in-porous-media/ Fundamentals of Fluid Flow in Porous Media {{DEFAULTSORT:Porous Medium * Materials