HOME

TheInfoList



OR:

Polyamorphism is the ability of a substance to exist in several different
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek ''a'' ("wit ...
modifications. It is analogous to the polymorphism of crystalline materials. Many amorphous substances can exist with different amorphous characteristics (e.g. polymers). However, polyamorphism requires ''two distinct'' amorphous states with a clear, discontinuous (first-order)
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
between them. When such a transition occurs between two stable liquid states, a polyamorphic transition may also be referred to as a liquid–liquid phase transition.


Overview

Even though amorphous materials exhibit no long-range periodic atomic ordering, there is still significant and varied local structure at inter-atomic length scales (see
structure of liquids and glasses The structure of liquids, glasses and other non-crystalline solids is characterized by the absence of long-range order which defines crystalline materials. Liquids and amorphous solids do, however, possess a rich and varied array of short to mediu ...
). Different local structures can produce amorphous phases of the same chemical composition with different physical properties such as
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
. In several cases sharp transitions have been observed between two different density amorphous states of the same material.
Amorphous ice Amorphous ice (non-crystalline or "vitreous" ice) is an amorphous solid form of water. Common ice is a crystalline material wherein the molecules are regularly arranged in a hexagonal lattice, whereas amorphous ice has a lack of long-range order ...
is one important example (see also examples below). Several of these transitions (including water) are expected to end in a second critical point.


Liquid–liquid transitions

Polyamorphism may apply to all amorphous states, i.e. glasses, other amorphous solids, supercooled liquids, ordinary liquids or fluids. A liquid–liquid transition however, is one that occurs only in the liquid state (red line in the phase diagram, top right). In this article liquid–liquid transitions are defined as transitions between two liquids of the same chemical substance. Elsewhere the term liquid–liquid transition may also refer to the more common transitions between liquid mixtures of different chemical composition. The stable liquid state unlike most glasses and amorphous solids, is a thermodynamically stable equilibrium state. Thus new liquid–liquid or fluid-fluid transitions in the stable liquid (or fluid) states are more easily analysed than transitions in amorphous solids where arguments are complicated by the non-equilibrium, non-ergodic nature of the amorphous state.


Rapoport's theory

Liquid–liquid transitions were originally considered by Rapoport in 1967 in order to explain high pressure melting curve maxima of some liquid metals. Rapoport's theory requires the existence of a melting curve maximum in polyamorphic systems.


Double well potentials

One physical explanation for polyamorphism is the existence of a double well inter-atomic pair potential (see lower right diagram). It is well known that the ordinary liquid–gas critical point appears when the inter-atomic pair potential contains a minimum. At lower energies (temperatures) particles trapped in this minimum condense into the liquid state. At higher temperatures however, these particles can escape the well and the sharp definition between liquid and gas is lost.
Molecular modelling Molecular modelling encompasses all methods, theoretical and computational, used to model or mimic the behaviour of molecules. The methods are used in the fields of computational chemistry, drug design, computational biology and materials scie ...
has shown that addition of a second well produces an additional transition between two different liquids (or fluids) with a second critical point.


Examples of polyamorphism

Polyamorphism has been experimentally observed or theoretically suggested in
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
, liquid
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ea ...
,
triphenyl phosphate Triphenyl phosphate (TPhP) is the chemical compound with the formula OP(OC6H5)3. This colourless solid is the ester (triester) of phosphoric acid and phenol. It is used as a plasticizer and a fire retardant in a wide variety of settings and produ ...
,
mannitol Mannitol is a type of sugar alcohol used as a sweetener and medication. It is used as a low calorie sweetener as it is poorly absorbed by the intestines. As a medication, it is used to decrease pressure in the eyes, as in glaucoma, and to lower ...
, and in some other molecular network-forming substances.


Water and structural analogues

The most famous case of polyamorphism is
amorphous ice Amorphous ice (non-crystalline or "vitreous" ice) is an amorphous solid form of water. Common ice is a crystalline material wherein the molecules are regularly arranged in a hexagonal lattice, whereas amorphous ice has a lack of long-range order ...
. Pressurizing conventional hexagonal ice crystals to about 1.6 GPa at
liquid nitrogen Liquid nitrogen—LN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, low viscosity liquid that is wide ...
temperature (77 K) converts them to the high-density amorphous ice. Upon releasing the pressure, this phase is stable and has density of 1.17 g/cm3 at 77 K and 1 bar. Consequent warming to 127 K at ambient pressure transforms this phase to a low-density amorphous ice (0.94 g/cm3 at 1 bar). Yet, if the high-density amorphous ice is warmed up to 165 K not at low pressures but keeping the 1.6 GPa compression, and then cooled back to 77 K, then another amorphous ice is produced, which has even higher density of 1.25 g/cm3 at 1 bar. All those amorphous forms have very different vibrational lattice spectra and intermolecular distances. A similar abrupt liquid-amorphous
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
is predicted in liquid silicon when cooled under high pressures. This observation is based on first principles molecular dynamics computer simulations, and might be expected intuitively since tetrahedral amorphous carbon, silicon, and germanium are known to be structurally analogous to water.


Oxide liquids and glasses

Yttria Yttrium oxide, also known as yttria, is Y2 O3. It is an air-stable, white solid substance. The thermal conductivity of yttrium oxide is 27 W/(m·K). Uses Phosphors Yttria is widely used to make Eu:YVO4 and Eu:Y2O3 phosphors that give the red c ...
- alumina melts are another system reported to exhibit polyamorphism. Observation of a liquid–liquid phase transition in the supercooled liquid has been reported. Though this is disputed in the literature. Polyamorphism has also been reported in Yttria-Alumina glasses. Yttria-Alumina melts quenched from about 1900 °C at a rate ~400 °C/s, can form glasses containing a second co-existing phase. This happens for certain Y/Al ratios (about 20–40 mol% Y2O3). The two phases have the same average composition but different density, molecular structure and hardness. However whether the second phase is glassy or crystalline is also debated. Continuous changes in density were observed upon cooling silicon dioxide or
germanium dioxide Germanium dioxide, also called germanium(IV) oxide, germania, and salt of germanium, is an inorganic compound with the chemical formula Ge O2. It is the main commercial source of germanium. It also forms as a passivation layer on pure germaniu ...
. Although continuous density changes do not constitute a first order transition, they may be indicative of an underlying abrupt transition.


Organic materials

Polyamorphism has also been observed in organic compounds, such as liquid
triphenyl phosphite Triphenyl phosphite is the organophosphorus compound with the formula P(OC6H5)3. It is a colourless viscous liquid. Preparation Triphenylphosphite is prepared from phosphorus trichloride and phenol in the presence of a catalytic amount of base: :P ...
at temperatures between 210 K and 226 K and ''n''-butanol at temperatures between 120 K and 140 K. Polyamorphism is also an important area in pharmaceutical science. The amorphous form of a drug typically has much better aqueous solubility (compared to the analogous crystalline form) but the actual local structure in an amorphous pharmaceutical can be different, depending on the method used to form the amorphous phase. Mannitol is the first pharmaceutical substance featuring polyamorphism. In addition to the regular amorphous phase, a second amorphous phase can be prepared at room temperature and pressure. This new phase has substantially lower energy, lower density and higher glass transition temperature. Since mannitol is widely used in pharmaceutical tablet formulations, mannitol polyamorphism offers a powerful tool to engineer the property and behavior of tablets.


See also

*
Glass Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenching) o ...
*
Liquid A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, an ...
*
Amorphous solid In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek ''a'' ("wi ...
*
structure of liquids and glasses The structure of liquids, glasses and other non-crystalline solids is characterized by the absence of long-range order which defines crystalline materials. Liquids and amorphous solids do, however, possess a rich and varied array of short to mediu ...
*
polymorphism (materials science) In materials science, polymorphism describes the existence of a solid material in more than one form or crystal structure. Polymorphism is a form of isomerism. Any crystalline material can exhibit the phenomenon. Allotropy refers to polymorphism ...
*
Pair distribution function The pair distribution function describes the distribution of distances between pairs of particles contained within a given volume. Mathematically, if ''a'' and ''b'' are two particles in a fluid, the pair distribution function of ''b'' with respect ...


References

{{Reflist, 30em Phase transitions Phases of matter Amorphous solids