In classical
Euclidean geometry
Euclidean geometry is a mathematical system attributed to Alexandria
Alexandria ( or ; ar, الإسكندرية ; arz, اسكندرية ; Coptic
Coptic may refer to:
Afro-Asia
* Copts, an ethnoreligious group mainly in the area of modern ...
, a point is a
primitive notion that models an exact location in the
space
Space is the boundless three-dimensional
Three-dimensional space (also: 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called parameter
A parameter (from the Ancient Greek language, Ancient Gre ...
, and has no length, width, or thickness. In modern
mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities and their changes (cal ...
, a point refers more generally to an
element
Element may refer to:
Science
* Chemical element
Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements
In chemistry, an element is a pure substance consisting only of atoms that all ...
of some
set called a
space
Space is the boundless three-dimensional
Three-dimensional space (also: 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called parameter
A parameter (from the Ancient Greek language, Ancient Gre ...
.
Being a primitive notion means that a point cannot be defined in terms of previously defined objects. That is, a point is defined only by some properties, called
axiom
An axiom, postulate or assumption is a statement that is taken to be truth, true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Greek ''axíōma'' () 'that which is thought worthy or fit' o ...

s, that it must satisfy; for example, ''"there is exactly one
line
Line, lines, The Line, or LINE may refer to:
Arts, entertainment, and media Films
* ''Lines'' (film), a 2016 Greek film
* ''The Line'' (2017 film)
* ''The Line'' (2009 film)
* ''The Line'', a 2009 independent film by Nancy Schwartzman
Lite ...

that passes through two different points"''.
Points in Euclidean geometry
Points, considered within the framework of
Euclidean geometry
Euclidean geometry is a mathematical system attributed to Alexandria
Alexandria ( or ; ar, الإسكندرية ; arz, اسكندرية ; Coptic
Coptic may refer to:
Afro-Asia
* Copts, an ethnoreligious group mainly in the area of modern ...
, are one of the most fundamental objects.
Euclid
Euclid (; grc-gre, Εὐκλείδης
Euclid (; grc, Εὐκλείδης – ''Eukleídēs'', ; fl. 300 BC), sometimes called Euclid of Alexandria to distinguish him from Euclid of Megara, was a Greek mathematician, often referre ...

originally defined the point as "that which has no part". In two-dimensional
Euclidean space
Euclidean space is the fundamental space of classical geometry. Originally, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any nonnegative integer dimension (mathematics), dimens ...
, a point is represented by an
ordered pair
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). It h ...

(, ) of numbers, where the first number
conventionally represents the
horizontal and is often denoted by , and the second number conventionally represents the
vertical
Vertical may refer to:
* Vertical direction
In astronomy
Astronomy (from el, ἀστρονομία, literally meaning the science that studies the laws of the stars) is a natural science that studies astronomical object, celestial objects ...
and is often denoted by . This idea is easily generalized to three-dimensional Euclidean space, where a point is represented by an ordered triplet (, , ) with the additional third number representing depth and often denoted by . Further generalizations are represented by an ordered
tuple
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). ...
t of terms, where is the
dimension
In physics
Physics is the that studies , its , its and behavior through , and the related entities of and . "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular s ...
of the space in which the point is located.
Many constructs within Euclidean geometry consist of an
infinite
Infinite may refer to:
Mathematics
*Infinite set, a set that is not a finite set
*Infinity, an abstract concept describing something without any limit
Music
*Infinite (band), a South Korean boy band
*''Infinite'' (EP), debut EP of American musi ...

collection of points that conform to certain axioms. This is usually represented by a
set of points; As an example, a
line
Line, lines, The Line, or LINE may refer to:
Arts, entertainment, and media Films
* ''Lines'' (film), a 2016 Greek film
* ''The Line'' (2017 film)
* ''The Line'' (2009 film)
* ''The Line'', a 2009 independent film by Nancy Schwartzman
Lite ...
is an infinite set of points of the form
, where through and are constants and is the dimension of the space. Similar constructions exist that define the
plane
Plane or planes may refer to:
* Airplane
An airplane or aeroplane (informally plane) is a fixed-wing aircraft
A fixed-wing aircraft is a heavier-than-air flying machine
Early flying machines include all forms of aircraft studied ...
,
line segment
In geometry
Geometry (from the grc, γεωμετρία; ' "earth", ' "measurement") is, with , one of the oldest branches of . It is concerned with properties of space that are related with distance, shape, size, and relative position ...

and other related concepts. A line segment consisting of only a single point is called a
degenerate
Degeneracy may refer to:
Science
* Codon degeneracy
* Degeneracy (biology), the ability of elements that are structurally different to perform the same function or yield the same output
* Degeneration (medical)
** Degenerative disease, a diseas ...
line segment.
In addition to defining points and constructs related to points, Euclid also postulated a key idea about points, that any two points can be connected by a straight line. This is easily confirmed under modern extensions of Euclidean geometry, and had lasting consequences at its introduction, allowing the construction of almost all the geometric concepts known at the time. However, Euclid's postulation of points was neither complete nor definitive, and he occasionally assumed facts about points that did not follow directly from his axioms, such as the ordering of points on the line or the existence of specific points. In spite of this, modern expansions of the system serve to remove these assumptions.
Dimension of a point
There are several inequivalent definitions of
dimension
In physics
Physics is the that studies , its , its and behavior through , and the related entities of and . "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular s ...
in mathematics. In all of the common definitions, a point is 0-dimensional.
Vector space dimension
The dimension of a vector space is the maximum size of a
linearly independent
In the theory of vector space
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change ...
subset. In a vector space consisting of a single point (which must be the zero vector 0), there is no linearly independent subset. The zero vector is not itself linearly independent, because there is a non trivial linear combination making it zero:
.
Topological dimension
The topological dimension of a topological space
is defined to be the minimum value of ''n'', such that every finite
open cover
In mathematics
Mathematics (from Ancient Greek, Greek: ) includes the study of such topics as quantity (number theory), mathematical structure, structure (algebra), space (geometry), and calculus, change (mathematical analysis, analysis). It h ...
of
admits a finite open cover
of
which
refines in which no point is included in more than ''n''+1 elements. If no such minimal ''n'' exists, the space is said to be of infinite covering dimension.
A point is
zero-dimensional
In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical il ...
with respect to the covering dimension because every open cover of the space has a refinement consisting of a single open set.
Hausdorff dimension
Let ''X'' be a
metric space
In mathematics
Mathematics (from Greek: ) includes the study of such topics as numbers (arithmetic and number theory), formulas and related structures (algebra), shapes and spaces in which they are contained (geometry), and quantities and t ...
. If ''S'' ⊂ ''X'' and ''d'' ∈
,_∞),_the_''d''-dimensional_Hausdorff_content_of_''S''_is_the_infimum_of_the_set_of_numbers_δ_≥_0_such_that_there_is_some_(indexed)_collection_of_metric_space.html" "title="infimum.html" ;"title=", ∞), the ''d''-dimensional Hausdorff content of ''S'' is the infimum">, ∞), the ''d''-dimensional Hausdorff content of ''S'' is the infimum of the set of numbers δ ≥ 0 such that there is some (indexed) collection of metric space">balls
A ball
A ball is a round object (usually spherical, but can sometimes be ovoid
An oval (from Latin ''ovum'', "egg") is a closed curve in a plane which resembles the outline of an egg. The term is not very specific, but in some areas ( p ...