HOME

TheInfoList



OR:

A planet is a large, rounded
astronomical body An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often u ...
that is neither a
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
nor its
remnant Remnant or remnants may refer to: Religion * Remnant (Bible), a recurring theme in the Bible * Remnant (Seventh-day Adventist belief), the remnant theme in the Seventh-day Adventist Church * ''The Remnant'' (newspaper), a traditional Catholic n ...
. The best available theory of planet formation is the nebular hypothesis, which posits that an
interstellar cloud An interstellar cloud is generally an accumulation of gas, plasma, and dust in our and other galaxies. Put differently, an interstellar cloud is a denser-than-average region of the interstellar medium, the matter and radiation that exists in the ...
collapses out of a nebula to create a young protostar orbited by a protoplanetary disk. Planets grow in this disk by the gradual accumulation of material driven by gravity, a process called
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
. The
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
has at least eight planets: the terrestrial planets Mercury, Venus,
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
and
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
, and the giant planets
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
, Saturn, Uranus and Neptune. These planets each rotate around an axis tilted with respect to its orbital pole. All of them possess an atmosphere, although that of Mercury is tenuous, and some share such features as ice caps,
season A season is a division of the year based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's tilted orbit around the Sun. In temperate and ...
s, volcanism,
hurricane A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Dep ...
s, tectonics, and even
hydrology Hydrology () is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and environmental watershed sustainability. A practitioner of hydrology is call ...
. Apart from Venus and Mars, the Solar System planets generate magnetic fields, and all except Venus and Mercury have natural satellites. The giant planets bear planetary rings, the most prominent being those of Saturn. The word ''planet'' probably comes from the Greek '' planḗtai,'' meaning "wanderers". In antiquity, this word referred to the Sun, Moon, and five points of light visible by the naked eye that moved across the background of the stars—namely, Mercury, Venus, Mars, Jupiter and Saturn. Planets have historically had religious associations: multiple cultures identified celestial bodies with gods, and these connections with mythology and folklore persist in the schemes for naming newly discovered Solar System bodies. Earth itself was recognized as a planet when heliocentrism supplanted geocentrism during the 16th and 17th centuries. With the development of the
telescope A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to obse ...
, the meaning of ''planet'' broadened to include objects only visible with assistance: the
ice giant An ice giant is a giant planet composed mainly of elements heavier than hydrogen and helium, such as oxygen, carbon, nitrogen, and sulfur. There are two ice giants in the Solar System: Uranus and Neptune. In astrophysics and planetary ...
s Uranus and Neptune; Ceres and other bodies later recognized to be part of the asteroid belt; and
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the S ...
, later found to be the largest member of the collection of icy bodies known as the Kuiper belt. The discovery of other large objects in the Kuiper belt, particularly Eris, spurred debate about how exactly to define a planet. The
International Astronomical Union The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreac ...
(IAU) adopted a standard by which the four terrestrials and four giants qualify, placing Ceres, Pluto and Eris in the category of dwarf planet, although many planetary scientists have continued to apply the term ''planet'' more broadly. Further advances in astronomy led to the discovery of over five thousand planets outside the Solar System, termed exoplanets. These include
hot Jupiter Hot Jupiters (sometimes called hot Saturns) are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter but that have very short orbital periods (). The close proximity to their stars and high surface-atmosphere t ...
s—giant planets that orbit close to their parent stars—like
51 Pegasi b 51 Pegasi b, officially named Dimidium , and formerly unofficially dubbed Bellerophon , is an extrasolar planet approximately away in the constellation of Pegasus. It was the first exoplanet to be discovered orbiting a main-sequence star, the ...
, super-Earths like
Gliese 581c Gliese 581c (Gl 581c or GJ 581c) is a planet orbiting within the Gliese 581 system. It is the second planet discovered in the system and the third in order from the star. With a mass at least 5.5 times that of the Earth, it is classified as a s ...
that have masses in between that of Earth and Neptune; and planets smaller than Earth, like
Kepler-20e Kepler-20e is an exoplanet orbiting Kepler-20. The planet is notable as it is the first planet with a smaller radius than Earth found orbiting a Sun-like star. The planet is second-closest to the star after Kepler-20b, and at , it is far too ho ...
. Multiple exoplanets have been found to orbit in the habitable zones of their stars, but Earth remains the only planet known to support
life Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energy ...
.


History

The idea of planets has evolved over its history, from the divine lights of antiquity to the earthly objects of the scientific age. The concept has expanded to include worlds not only in the Solar System, but in multitudes of other extrasolar systems. The consensus definition as to what counts as a planet vs. other objects orbiting the Sun has changed several times, previously encompassing asteroids, moons, and dwarf planets like
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the S ...
, and there continues to be some disagreement today. The five
classical planet In classical antiquity, the seven classical planets or seven luminaries are the seven moving astronomical objects in the sky visible to the naked eye: the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn. The word '' planet'' co ...
s of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
, being visible to the naked eye, have been known since ancient times and have had a significant impact on
mythology Myth is a folklore genre consisting of narratives that play a fundamental role in a society, such as foundational tales or origin myths. Since "myth" is widely used to imply that a story is not objectively true, the identification of a narra ...
,
religious cosmology Religious cosmology is an explanation of the origin, evolution, and eventual fate of the universe from a religious perspective. This may include beliefs on origin in the form of a creation myth, subsequent evolution, current organizational form ...
, and ancient
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
. In ancient times, astronomers noted how certain lights moved across the sky, as opposed to the " fixed stars", which maintained a constant relative position in the sky. Ancient Greeks called these lights (, "wandering stars") or simply (, "wanderers"), from which today's word "planet" was derived. In
ancient Greece Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity ( AD 600), that comprised a loose collection of cu ...
,
China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's List of countries and dependencies by population, most populous country, with a Population of China, population exceeding 1.4 billion, slig ...
, Babylon, and indeed all pre-modern civilizations, it was almost universally believed that Earth was the center of the Universe and that all the "planets" circled Earth. The reasons for this perception were that stars and planets appeared to revolve around Earth each day and the apparently
common-sense ''Common Sense'' is a 47-page pamphlet written by Thomas Paine in 1775–1776 advocating independence from Great Britain to people in the Thirteen Colonies. Writing in clear and persuasive prose, Paine collected various moral and political a ...
perceptions that Earth was solid and stable and that it was not moving but at rest.


Babylon

The first civilization known to have a functional theory of the planets were the Babylonians, who lived in
Mesopotamia Mesopotamia ''Mesopotamíā''; ar, بِلَاد ٱلرَّافِدَيْن or ; syc, ܐܪܡ ܢܗܪ̈ܝܢ, or , ) is a historical region of Western Asia situated within the Tigris–Euphrates river system, in the northern part of the ...
in the first and second millennia BC. The oldest surviving planetary astronomical text is the Babylonian Venus tablet of Ammisaduqa, a 7th-century BC copy of a list of observations of the motions of the planet Venus, that probably dates as early as the second millennium BC. The MUL.APIN is a pair of
cuneiform Cuneiform is a logo- syllabic script that was used to write several languages of the Ancient Middle East. The script was in active use from the early Bronze Age until the beginning of the Common Era. It is named for the characteristic wedge- ...
tablets dating from the 7th century BC that lays out the motions of the Sun, Moon, and planets over the course of the year. Late Babylonian astronomy is the origin of Western astronomy and indeed all Western efforts in the exact sciences. The ''
Enuma anu enlil Enuma Anu Enlil ( ,'' The Assyrian Dictionary'', volume 7 (I/J) – ''inūma'', The Oriental Institute, Chicago 1960, s. 160. ''When he godsAnu and Enlil'' .., abbreviated EAE, is a major series of 68 or 70 tablets (depending on the recension) ...
'', written during the Neo-Assyrian period in the 7th century BC, comprises a list of omens and their relationships with various celestial phenomena including the motions of the planets. Venus, Mercury, and the outer planets
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
,
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
, and Saturn were all identified by
Babylonian astronomers Babylonian astronomy was the study or recording of celestial objects during the early history of Mesopotamia. Babylonian astronomy seemed to have focused on a select group of stars and constellations known as Ziqpu stars. These constellations m ...
. These would remain the only known planets until the invention of the
telescope A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to obse ...
in early modern times.


Greco-Roman astronomy

The ancient Greeks initially did not attach as much significance to the planets as the Babylonians. The Pythagoreans, in the 6th and 5th centuries BC appear to have developed their own independent planetary theory, which consisted of the Earth, Sun, Moon, and planets revolving around a "Central Fire" at the center of the Universe.
Pythagoras Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samian, or simply ; in Ionian Greek; ) was an ancient Ionian Greek philosopher and the eponymous founder of Pythagoreanism. His poli ...
or Parmenides is said to have been the first to identify the evening star (
Hesperos In Greek mythology, Hesperus (; grc, Ἕσπερος, Hésperos) is the Evening Star, the planet Venus in the evening. He is one of the ''Astra Planeta''. A son of the dawn goddess Eos (Roman Aurora), he is the half-brother of her other son, Pho ...
) and morning star (
Phosphoros Phosphorus () is one of the ''Astra Planeta'', specifically the god of the planet Venus in its appearance as the Morning Star. Another Greek name for the Morning Star is "Eosphorus" ( grc, Ἑωσφόρος, Heōsphoros, link=no), which means ...
) as one and the same (
Aphrodite Aphrodite ( ; grc-gre, Ἀφροδίτη, Aphrodítē; , , ) is an ancient Greek goddess associated with love, lust, beauty, pleasure, passion, and procreation. She was syncretized with the Roman goddess . Aphrodite's major symbols incl ...
, Greek corresponding to Latin Venus), though this had long been known in Mesopotamia. In the 3rd century BC, Aristarchus of Samos proposed a heliocentric system, according to which Earth and the planets revolved around the Sun. The geocentric system remained dominant until the
Scientific Revolution The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transforme ...
. By the 1st century BC, during the
Hellenistic period In Classical antiquity, the Hellenistic period covers the time in Mediterranean history after Classical Greece, between the death of Alexander the Great in 323 BC and the emergence of the Roman Empire, as signified by the Battle of Actium in ...
, the Greeks had begun to develop their own mathematical schemes for predicting the positions of the planets. These schemes, which were based on geometry rather than the arithmetic of the Babylonians, would eventually eclipse the Babylonians' theories in complexity and comprehensiveness, and account for most of the astronomical movements observed from Earth with the naked eye. These theories would reach their fullest expression in the '' Almagest'' written by
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importanc ...
in the 2nd century CE. So complete was the domination of Ptolemy's model that it superseded all previous works on astronomy and remained the definitive astronomical text in the Western world for 13 centuries. To the Greeks and Romans there were seven known planets, each presumed to be circling Earth according to the complex laws laid out by Ptolemy. They were, in increasing order from Earth (in Ptolemy's order and using modern names): the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn. ''Note: select the Etymology tab ''


Medieval astronomy

After the
fall of the Western Roman Empire The fall of the Western Roman Empire (also called the fall of the Roman Empire or the fall of Rome) was the loss of central political control in the Western Roman Empire, a process in which the Empire failed to enforce its rule, and its va ...
, astronomy developed further in India and the medieval Islamic world. In 499 CE, the Indian astronomer Aryabhata propounded a planetary model that explicitly incorporated Earth's rotation about its axis, which he explains as the cause of what appears to be an apparent westward motion of the stars. He also theorised that the orbits of planets were elliptical. Aryabhata's followers were particularly strong in
South India South India, also known as Dakshina Bharata or Peninsular India, consists of the peninsular southern part of India. It encompasses the Indian states of Andhra Pradesh, Karnataka, Kerala, Tamil Nadu, and Telangana, as well as the union terr ...
, where his principles of the diurnal rotation of Earth, among others, were followed and a number of secondary works were based on them. The astronomy of the
Islamic Golden Age The Islamic Golden Age was a period of cultural, economic, and scientific flourishing in the history of Islam, traditionally dated from the 8th century to the 14th century. This period is traditionally understood to have begun during the reign ...
mostly took place in the
Middle East The Middle East ( ar, الشرق الأوسط, ISO 233: ) is a geopolitical region commonly encompassing Arabian Peninsula, Arabia (including the Arabian Peninsula and Bahrain), Anatolia, Asia Minor (Asian part of Turkey except Hatay Pro ...
,
Central Asia Central Asia, also known as Middle Asia, is a region of Asia that stretches from the Caspian Sea in the west to western China and Mongolia in the east, and from Afghanistan and Iran in the south to Russia in the north. It includes the fo ...
,
Al-Andalus Al-Andalus translit. ; an, al-Andalus; ast, al-Ándalus; eu, al-Andalus; ber, ⴰⵏⴷⴰⵍⵓⵙ, label= Berber, translit=Andalus; ca, al-Àndalus; gl, al-Andalus; oc, Al Andalús; pt, al-Ândalus; es, al-Ándalus () was the M ...
, and North Africa, and later in the
Far East The ''Far East'' was a European term to refer to the geographical regions that includes East and Southeast Asia as well as the Russian Far East to a lesser extent. South Asia is sometimes also included for economic and cultural reasons. The t ...
and India. These astronomers, like the polymath
Ibn al-Haytham Ḥasan Ibn al-Haytham, Latinized as Alhazen (; full name ; ), was a medieval mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq.For the description of his main fields, see e.g. ("He is one of the pr ...
, generally accepted geocentrism, although they did dispute Ptolemy's system of epicycles and sought alternatives. The 10th-century astronomer Abu Sa'id al-Sijzi accepted that the Earth rotates around its axis. In the 11th century, the transit of Venus was observed by Avicenna. His contemporary Al-Biruni devised a method of determining the Earth's radius using
trigonometry Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. ...
that, unlike the older method of Eratosthenes, only required observations at a single mountain.


Scientific Revolution and new planets

With the advent of the
Scientific Revolution The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transforme ...
and the heliocentric model of
Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic canon, who formulat ...
, Galileo and
Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws o ...
, use of the term "planet" changed from something that moved around the sky relative to the
fixed star In astronomy, fixed stars ( la, stellae fixae) is a term to name the full set of glowing points, astronomical objects actually and mainly stars, that appear not to move relative to one another against the darkness of the night sky in the backgro ...
to a body that orbited the Sun, directly (a primary planet) or indirectly (a secondary or satellite planet). Thus the Earth was added to the roster of planets and the Sun was removed. The Copernican count of primary planets stood until 1781, when William Herschel discovered Uranus. When four satellites of Jupiter (the Galilean moons) and five of Saturn were discovered in the 17th century, they were thought of as "satellite planets" or "secondary planets" orbiting the primary planets, though in the following decades they would come to be called simply "satellites" for short. Scientists generally considered planetary satellites to also be planets until about the 1920s, although this usage was not common among non-scientists. In the first decade of the 19th century, four new planets were discovered: Ceres (in 1801), Pallas (in 1802), Juno (in 1804), and Vesta (in 1807). It soon became apparent that they were rather different from previously known planets: they shared the same general region of space, between Mars and Jupiter (the asteroid belt), with sometimes overlapping orbits. This was an area where only one planet had been expected, and they were much much smaller than all other planets; indeed, it was suspected that they might be shards of a larger planet that had broken up. Herschel called them '' asteroids'' (from the Greek for "starlike") because even in the largest telescopes they resembled stars, without a resolvable disk. The situation was stable for four decades, but in the mid-1840s several additional asteroids were discovered ( Astraea in 1845, Hebe in 1847, Iris in 1847,
Flora Flora is all the plant life present in a particular region or time, generally the naturally occurring ( indigenous) native plants. Sometimes bacteria and fungi are also referred to as flora, as in the terms '' gut flora'' or '' skin flora''. ...
in 1848,
Metis Metis or Métis may refer to: Ethnic groups * Métis, recognized Indigenous communities in Canada and America whose distinct culture and language emerged after early intermarriage between First Nations peoples and early European settlers, primar ...
in 1848, and Hygiea in 1849), and soon new "planets" were discovered every year. As a result, astronomers began tabulating the asteroids (
minor planet According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor ...
s) separately from the major planets, and assigning them numbers instead of abstract planetary symbols, although they continued to be considered as small planets. Neptune was discovered in 1846, its position having been predicted thanks to its gravitational influence upon Uranus. Because the orbit of Mercury appeared to be affected in a similar way, it was believed in the late 19th century that there might be another planet even closer to the Sun. However, the discrepancy between Mercury's orbit and the predictions of Newtonian gravity was instead explained by an improved theory of gravity, Einstein's general relativity.


20th century

Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the S ...
was discovered in 1930. After initial observations led to the belief that it was larger than Earth, the object was immediately accepted as the ninth major planet. Further monitoring found the body was actually much smaller: in 1936, Ray Lyttleton suggested that Pluto may be an escaped satellite of Neptune, and Fred Whipple suggested in 1964 that Pluto may be a comet. The discovery of its large moon Charon in 1978 showed that Pluto was only 0.2% the mass of Earth. As this was still substantially more massive than any known asteroid, and because no other trans-Neptunian objects had been discovered at that time, Pluto kept its planetary status, only officially losing it in 2006. In the 1950s, Gerard Kuiper published papers on the origin of the asteroids. He recognised that asteroids were typically not spherical, as had previously been thought, and that the
asteroid families An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere ...
were remnants of collisions. Thus he differentiated between the largest asteroids as "true planets" versus the smaller ones as collisional fragments. From the 1960s onwards, the term "minor planet" was mostly displaced by the term "asteroid", and references to the asteroids as planets in the literature became scarce, except for the geologically evolved largest three: Ceres, and less often Pallas and Vesta. The beginning of Solar System exploration by space probes in the 1960s spurred a renewed interest in planetary science. A split in definitions regarding satellites occurred around then: planetary scientists began to reconsider the large moons as also being planets, but astronomers who were not planetary scientists generally did not. In 1992, astronomers
Aleksander Wolszczan Aleksander Wolszczan (born 29 April 1946) is a Polish astronomer. He is the co-discoverer of the first confirmed extrasolar planets and pulsar planets. Early life and education Wolszczan was born on 29 April 1946 in Szczecinek located in pre ...
and Dale Frail announced the discovery of planets around a pulsar,
PSR B1257+12 PSR B1257+12, previously designated PSR 1257+12, alternatively designated PSR J1300+1240, is a millisecond pulsar located 2,300 light-years from the Sun in the constellation of Virgo, rotating at about 161 times per second (faster tha ...
. This discovery is generally considered to be the first definitive detection of a planetary system around another star. Then, on 6 October 1995,
Michel Mayor Michel Gustave Édouard Mayor (; born 12 January 1942) is a Swiss astrophysicist and professor emeritus at the University of Geneva's Department of Astronomy. He formally retired in 2007, but remains active as a researcher at the Observatory ...
and Didier Queloz of the Geneva Observatory announced the first definitive detection of an exoplanet orbiting an ordinary
main-sequence In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar ...
star ( 51 Pegasi). The discovery of extrasolar planets led to another ambiguity in defining a planet: the point at which a planet becomes a star. Many known extrasolar planets are many times the mass of Jupiter, approaching that of stellar objects known as
brown dwarf Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
s. Brown dwarfs are generally considered stars due to their theoretical ability to fuse
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
, a heavier isotope of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
. Although objects more massive than 75 times that of Jupiter fuse simple hydrogen, objects of 13 Jupiter masses can fuse deuterium. Deuterium is quite rare, constituting less than 0.0026% of the hydrogen in the galaxy, and most brown dwarfs would have ceased fusing deuterium long before their discovery, making them effectively indistinguishable from supermassive planets.


21st century

With the discovery during the latter half of the 20th century of more objects within the Solar System and large objects around other stars, disputes arose over what should constitute a planet. There were particular disagreements over whether an object should be considered a planet if it was part of a distinct population such as a
belt Belt may refer to: Apparel * Belt (clothing), a leather or fabric band worn around the waist * Championship belt, a type of trophy used primarily in combat sports * Colored belts, such as a black belt or red belt, worn by martial arts practiti ...
, or if it was large enough to generate energy by the thermonuclear fusion of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
. Complicating the matter even further, bodies too small to generate energy by fusing deuterium can form by gas-cloud collapse just like stars and brown dwarfs, even down to the mass of Jupiter: there was thus disagreement about whether how a body formed should be taken into account. A growing number of astronomers argued for Pluto to be declassified as a planet, because many similar objects approaching its size had been found in the same region of the Solar System (the Kuiper belt) during the 1990s and early 2000s. Pluto was found to be just one small body in a population of thousands. They often referred to the demotion of the asteroids as a precedent, although that had been done based on their geophysical differences from planets rather than their being in a belt. Some of the larger trans-Neptunian objects, such as
Quaoar Quaoar (50000 Quaoar), provisional designation , is a dwarf planet in the Kuiper belt, a region of icy planetesimals beyond Neptune. A non-resonant object ( cubewano), it measures approximately in diameter, about half the diameter of Pluto. Th ...
, Sedna, Eris, and Haumea were heralded in the popular press as the tenth planet. The announcement of Eris in 2005, an object 27% more massive than Pluto, created the impetus for an official definition of a planet, as considering Pluto a planet would logically have demanded that Eris be considered a planet as well. Since different procedures were in place for naming planets versus non-planets, this created an urgent situation because under the rules Eris could not be named without defining what a planet was. At the time, it was also thought that the size required for a trans-Neptunian object to become round was about the same as that required for the moons of the giant planets (about 400 km diameter), a figure that would have suggested about 200 round objects in the Kuiper belt and thousands more beyond. Many astronomers argued that the public would not accept a definition creating a large number of planets. To acknowledge the problem, the IAU set about creating the definition of planet, and produced one in August 2006. Their definition dropped to the eight significantly larger bodies that had cleared their orbit (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune), and a new class of dwarf planets was created, initially containing three objects (Ceres, Pluto and Eris). This definition has not been universally used or accepted. In planetary geology celestial objects have been assessed and defined as planets by geophysical characteristics. Planetary scientists are more interested in planetary geology than dynamics, so they classify planets based on their geological properties. A celestial body may acquire a dynamic (planetary) geology at approximately the mass required for its mantle to become plastic under its own weight. This leads to a state of
hydrostatic equilibrium In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planeta ...
where the body acquires a stable, round shape, which is adopted as the hallmark of planethood by geophysical definitions. For example: See p. 208. In the Solar System, this mass is generally less than the mass required for a body to clear its orbit, and thus some objects that are considered "planets" under geophysical definitions are not considered as such under the IAU definition, such as Ceres and Pluto. Proponents of such definitions often argue that location should not matter and that planethood should be defined by the intrinsic properties of an object. Dwarf planets had been proposed as a category of small planet (as opposed to
planetoid According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor ...
s as sub-planetary objects) and planetary geologists continue to treat them as planets despite the IAU definition. The number of dwarf planets even among known objects is not certain. In 2019, Grundy et al. argued based on the low densities of some mid-sized trans-Neptunian objects that the limiting size required for a trans-Neptunian object to reach equilibrium was in fact much larger than it is for the icy moons of the giant planets, being about 900 km diameter. There is general consensus on Ceres in the asteroid belt and on the eight trans-Neptunians that probably cross this threshold: Quaoar, Sedna, Orcus, Pluto, Haumea, Eris, Makemake, and Gonggong. Planetary geologists may include the twenty known planetary-mass moons as "satellite planets", including Earth's Moon and Pluto's Charon, like the early modern astronomers. Some go even further and include relatively large, geologically evolved bodies that are nonetheless not very round today, such as Pallas and Vesta, or rounded bodies that were completely disrupted by impacts and re-accreted like Hygiea, as planets. The 2006 IAU definition presents some challenges for exoplanets because the language is specific to the Solar System and the criteria of roundness and orbital zone clearance are not presently observable for exoplanets. There is no official definition of exoplanets, but the IAU's working group on the topic adopted a provisional statement in 2018. Astronomer Jean-Luc Margot proposed a mathematical criterion that determines whether an object can clear its orbit during the lifetime of its host star, based on the mass of the planet, its semimajor axis, and the mass of its host star. The formula produces a value called that is greater than 1 for planets. The eight known planets and all known exoplanets have values above 100, while Ceres, Pluto, and Eris have values of 0.1, or less. Objects with values of 1 or more are expected to be approximately spherical, so that objects that fulfill the orbital zone clearance requirement automatically fulfill the roundness requirement.


Definition and similar concepts

At the 2006 meeting of the IAU's General Assembly, after much debate and one failed proposal, the following definition was passed in a resolution voted for by a large majority of those remaining at the meeting, addressing particularly the issue of the lower limits for a celestial object to be defined as a planet. The 2006 resolution defines planets within the Solar System as follows: Under this definition, the Solar System is considered to have eight planets. Bodies that fulfill the first two conditions but not the third are classified as dwarf planets, provided they are not natural satellites of other planets. Originally an IAU committee had proposed a definition that would have included a larger number of planets as it did not include (c) as a criterion. After much discussion, it was decided via a vote that those bodies should instead be classified as dwarf planets. This definition is based in modern theories of planetary formation, in which planetary embryos initially clear their orbital neighborhood of other smaller objects. As described below, planets form by material accreting together in a disk of matter surrounding a protostar. This process results in a collection of relatively substantial objects, each of which has either "swept up" or scattered away most of the material that had been orbiting near it. These objects do not collide with one another because they are too far apart, sometimes in orbital resonance.


Exoplanet

The 2006 IAU definition presents some challenges for exoplanets because the language is specific to the Solar System and the criteria of roundness and orbital zone clearance are not presently observable for exoplanets. The IAU working group on extrasolar planets (WGESP) issued a working definition in 2001 and amended it in 2003. In 2018, this definition was reassessed and updated as knowledge of exoplanets increased. The current official working definition of an exoplanet is as follows: The IAU noted that this definition could be expected to evolve as knowledge improves. A 2022 review article discussing the history and rationale of this definition suggested that the words "in young star clusters" should be deleted in clause 3, as such objects have now been found elsewhere, and that the term "sub-brown dwarfs" should be replaced by the more current "free-floating planetary mass objects".


Planetary-mass object

Geoscientists often reject the IAU definition, preferring to consider round moons and dwarf planets as also being planets. Some scientists who accept the IAU definition of "planet" use other terms for bodies satisfying geophysical planet definitions, such as "world". The term "planetary mass object" has also been used to refer to ambiguous situations concerning exoplanets, such as objects with mass typical for a planet that are free-floating or orbit a brown dwarf instead of a star.


Mythology and naming

The names for the planets in the Western world are derived from the naming practices of the Romans, which ultimately derive from those of the Greeks and the Babylonians. In
ancient Greece Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity ( AD 600), that comprised a loose collection of cu ...
, the two great luminaries the Sun and the Moon were called '' Helios'' and '' Selene'', two ancient
Titanic RMS ''Titanic'' was a British passenger liner, operated by the White Star Line, which sank in the North Atlantic Ocean on 15 April 1912 after striking an iceberg during her maiden voyage from Southampton, England, to New York City, Unite ...
deities; the slowest planet (Saturn) was called '' Phainon'', the shiner; followed by ''
Phaethon Phaethon (; grc, Φαέθων, Phaéthōn, ), also spelled Phaëthon, was the son of the Oceanid Clymene and the sun-god Helios in Greek mythology. According to most authors, Phaethon is the son of Helios, and out of desire to have his paren ...
'' (Jupiter), "bright"; the red planet (Mars) was known as '' Pyroeis'', the "fiery"; the brightest (Venus) was known as ''
Phosphoros Phosphorus () is one of the ''Astra Planeta'', specifically the god of the planet Venus in its appearance as the Morning Star. Another Greek name for the Morning Star is "Eosphorus" ( grc, Ἑωσφόρος, Heōsphoros, link=no), which means ...
'', the light bringer; and the fleeting final planet (Mercury) was called '' Stilbon'', the gleamer. The Greeks assigned each planet to one among their pantheon of gods, the Olympians and the earlier Titans: * Helios and Selene were the names of both planets and gods, both of them Titans (later supplanted by Olympians
Apollo Apollo, grc, Ἀπόλλωνος, Apóllōnos, label=genitive , ; , grc-dor, Ἀπέλλων, Apéllōn, ; grc, Ἀπείλων, Apeílōn, label=Arcadocypriot Greek, ; grc-aeo, Ἄπλουν, Áploun, la, Apollō, la, Apollinis, label= ...
and
Artemis In ancient Greek mythology and religion, Artemis (; grc-gre, Ἄρτεμις) is the goddess of the hunt, the wilderness, wild animals, nature, vegetation, childbirth, care of children, and chastity. She was heavily identified with ...
); * Phainon was sacred to Cronus, the Titan who fathered the Olympians; * Phaethon was sacred to Zeus, Cronus's son who deposed him as king; * Pyroeis was given to Ares, son of Zeus and god of war; * Phosphoros was ruled by
Aphrodite Aphrodite ( ; grc-gre, Ἀφροδίτη, Aphrodítē; , , ) is an ancient Greek goddess associated with love, lust, beauty, pleasure, passion, and procreation. She was syncretized with the Roman goddess . Aphrodite's major symbols incl ...
, the goddess of love; and * Stilbon with its speedy motion, was ruled over by
Hermes Hermes (; grc-gre, Ἑρμῆς) is an Olympian deity in ancient Greek religion and mythology. Hermes is considered the herald of the gods. He is also considered the protector of human heralds, travellers, thieves, merchants, and orat ...
, messenger of the gods and god of learning and wit. The Greek practice of grafting their gods' names onto the planets was almost certainly borrowed from the Babylonians. The Babylonians named Venus after their goddess of love, Ishtar; Mars after their god of war, Nergal; Mercury after their god of wisdom
Nabu Nabu ( akk, cuneiform: 𒀭𒀝 Nabû syr, ܢܵܒܼܘܼ\ܢܒܼܘܿ\ܢܵܒܼܘܿ Nāvū or Nvō or Nāvō) is the ancient Mesopotamian patron god of literacy, the rational arts, scribes, and wisdom. Etymology and meaning The Akkadian "n ...
; and Jupiter after their chief god, Marduk. There are too many concordances between Greek and Babylonian naming conventions for them to have arisen separately. Given the differences in mythology, the correspondence was not perfect. For instance, the Babylonian Nergal was a god of war, and thus the Greeks identified him with Ares. Unlike Ares, Nergal was also a god of pestilence and ruler of the underworld. Today, most people in the western world know the planets by names derived from the Olympian pantheon of gods. Although modern Greeks still use their ancient names for the planets, other European languages, because of the influence of the
Roman Empire The Roman Empire ( la, Imperium Romanum ; grc-gre, Βασιλεία τῶν Ῥωμαίων, Basileía tôn Rhōmaíōn) was the post-Roman Republic, Republican period of ancient Rome. As a polity, it included large territorial holdings aro ...
and, later, the
Catholic Church The Catholic Church, also known as the Roman Catholic Church, is the List of Christian denominations by number of members, largest Christian church, with 1.3 billion baptized Catholics Catholic Church by country, worldwide . It is am ...
, use the Roman (Latin) names rather than the Greek ones. The Romans inherited Proto-Indo-European mythology as the Greeks did and shared with them a common pantheon under different names, but the Romans lacked the rich narrative traditions that Greek poetic culture had given their gods. During the later period of the
Roman Republic The Roman Republic ( la, Res publica Romana ) was a form of government of Rome and the era of the classical Roman civilization when it was run through public representation of the Roman people. Beginning with the overthrow of the Roman Ki ...
, Roman writers borrowed much of the Greek narratives and applied them to their own pantheon, to the point where they became virtually indistinguishable. When the Romans studied Greek astronomy, they gave the planets their own gods' names: '' Mercurius'' (for Hermes), '' Venus'' (Aphrodite), ''
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
'' (Ares), ''
Iuppiter Jupiter ( la, Iūpiter or , from Proto-Italic "day, sky" + "father", thus " sky father" Greek: Δίας or Ζεύς), also known as Jove (gen. ''Iovis'' ), is the god of the sky and thunder, and king of the gods in ancient Roman religion a ...
'' (Zeus) and '' Saturnus'' (Cronus). Some Romans, following a belief possibly originating in
Mesopotamia Mesopotamia ''Mesopotamíā''; ar, بِلَاد ٱلرَّافِدَيْن or ; syc, ܐܪܡ ܢܗܪ̈ܝܢ, or , ) is a historical region of Western Asia situated within the Tigris–Euphrates river system, in the northern part of the ...
but developed in Hellenistic Egypt, believed that the seven gods after whom the planets were named took hourly shifts in looking after affairs on Earth. The order of shifts went Saturn, Jupiter, Mars, Sun, Venus, Mercury, Moon (from the farthest to the closest planet). Therefore, the first day was started by Saturn (1st hour), second day by Sun (25th hour), followed by Moon (49th hour), Mars, Mercury, Jupiter and Venus. Because each day was named by the god that started it, this became the order of the
days of the week A day is the time period of a full rotation of the Earth with respect to the Sun. On average, this is 24 hours, 1440 minutes, or 86,400 seconds. In everyday life, the word "day" often refers to a solar day, which is the length between two ...
in the
Roman calendar The Roman calendar was the calendar used by the Roman Kingdom and Roman Republic. The term often includes the Julian calendar established by the reforms of the dictator Julius Caesar and emperor Augustus in the late 1stcenturyBC and some ...
. In English, ''Saturday'', ''Sunday'', and ''Monday'' are straightforward translations of these Roman names. The other days were renamed after '' Tīw'' (Tuesday), '' Wōden'' (Wednesday), '' Þunor'' (Thursday), and '' Frīġ'' (Friday), the Anglo-Saxon gods considered similar or equivalent to Mars, Mercury, Jupiter, and Venus, respectively. Earth's name in English is not derived from Greco-Roman mythology. Because it was only generally accepted as a planet in the 17th century, there is no tradition of naming it after a god. (The same is true, in English at least, of the Sun and the Moon, though they are no longer generally considered planets.) The name originates from the
Old English Old English (, ), or Anglo-Saxon, is the earliest recorded form of the English language, spoken in England and southern and eastern Scotland in the early Middle Ages. It was brought to Great Britain by Anglo-Saxon settlers in the mid-5th ...
word ''eorþe'', which was the word for "ground" and "dirt" as well as the world itself. As with its equivalents in the other
Germanic languages The Germanic languages are a branch of the Indo-European language family spoken natively by a population of about 515 million people mainly in Europe, North America, Oceania and Southern Africa. The most widely spoken Germanic language, ...
, it derives ultimately from the
Proto-Germanic Proto-Germanic (abbreviated PGmc; also called Common Germanic) is the reconstructed proto-language of the Germanic branch of the Indo-European languages. Proto-Germanic eventually developed from pre-Proto-Germanic into three Germanic br ...
word ''erþō'', as can be seen in the English ''earth'', the German ''Erde'', the Dutch ''aarde'', and the Scandinavian ''jord''. Many of the
Romance languages The Romance languages, sometimes referred to as Latin languages or Neo-Latin languages, are the various modern languages that evolved from Vulgar Latin. They are the only extant subgroup of the Italic languages in the Indo-European language ...
retain the old Roman word '' terra'' (or some variation of it) that was used with the meaning of "dry land" as opposed to "sea". The non-Romance languages use their own native words. The Greeks retain their original name, '' Γή'' ''(Ge)''. Non-European cultures use other planetary-naming systems.
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area, the List of countries and dependencies by population, second-most populous ...
uses a system based on the
Navagraha Navagraha are nine heavenly bodies and deities that influence human life on Earth according to Hinduism and Hindu astrology. The term is derived from ''nava'' ( sa, नव "nine") and ''graha'' ( sa, ग्रह "planet, seizing, laying hold of, ...
, which incorporates the seven traditional planets (''
Surya Surya (; sa, सूर्य, ) is the sun as well as the solar deity in Hinduism. He is traditionally one of the major five deities in the Smarta tradition, all of whom are considered as equivalent deities in the Panchayatana puja and a ...
'' 'Sun', ''
Chandra Chandra ( sa, चन्द्र, Candra, shining' or 'moon), also known as Soma ( sa, सोम), is the Hindu god of the Moon, and is associated with the night, plants and vegetation. He is one of the Navagraha (nine planets of Hinduism) an ...
'' 'Moon', '' Budha'' for Mercury, '' Shukra'' ('bright') for Venus, ''
Mangala Mangala (Sanskrit: मङ्गल, IAST: ) is the personification, as well as the name for the planet Mars, in Hindu literature. Also known as Lohita (), he is the celibate deity of anger, aggression, as well as war. According to Vaishnavism, ...
'' (the god of war) for Mars, '' '' (councilor of the gods) for Jupiter, and '' Shani'' (symbolic of time) for Saturn) and the ascending and descending lunar nodes ''
Rahu Rāhu ( Sanskrit: राहु, 16px, ☊) is one of the nine major celestial bodies (navagraha) in Hindu texts and the king of meteors. It represents the ascension of the moon in its precessional orbit around the earth, also referred as th ...
'' and ''Ketu''. China and the countries of eastern Asia historically subject to Chinese cultural influence (such as Japan,
Korea Korea ( ko, 한국, or , ) is a peninsular region in East Asia. Since 1945, it has been divided at or near the 38th parallel, with North Korea (Democratic People's Republic of Korea) comprising its northern half and South Korea (Republic ...
and
Vietnam Vietnam or Viet Nam ( vi, Việt Nam, ), officially the Socialist Republic of Vietnam,., group="n" is a country in Southeast Asia, at the eastern edge of mainland Southeast Asia, with an area of and population of 96 million, making ...
) use a naming system based on the five Chinese elements:
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
(Mercury 星 "water star"),
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
(Venus 星 "metal star"),
fire Fire is the rapid oxidation of a material (the fuel) in the exothermic chemical process of combustion, releasing heat, light, and various reaction products. At a certain point in the combustion reaction, called the ignition point, flames ...
(Mars 星 "fire star"),
wood Wood is a porous and fibrous structural tissue found in the stems and roots of trees and other woody plants. It is an organic materiala natural composite of cellulose fibers that are strong in tension and embedded in a matrix of lignin ...
(Jupiter 星 "wood star") and
earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
(Saturn 星 "earth star"). The names of Uranus (
''Tiān'' () is one of the oldest Chinese terms for heaven and a key concept in Chinese mythology, philosophy, and religion. During the Shang dynasty (17th―11th century BCE), the Chinese referred to their supreme god as '' Shàngdì'' (, " ...
王星 "sky king star"), Neptune ( 王星 "sea king star"), and Pluto ( 王星 "underworld king star") in Chinese, Korean, and Japanese are
calque In linguistics, a calque () or loan translation is a word or phrase borrowed from another language by literal word-for-word or root-for-root translation. When used as a verb, "to calque" means to borrow a word or phrase from another language ...
s based on the roles of those gods in Roman and Greek mythology. Chinese uses calques for the dwarf planets and many asteroids as well, e.g. Eris ( 神星 "quarrel goddess star"), Ceres ( 神星 "grain goddess star"), and Pallas ( 神星 "wisdom goddess star"). In traditional Hebrew astronomy, the seven traditional planets have (for the most part) descriptive names – the Sun is חמה ''Ḥammah'' or "the hot one", the Moon is לבנה ''Levanah'' or "the white one", Venus is כוכב נוגה ''Kokhav Nogah'' or "the bright planet", Mercury is כוכב ''Kokhav'' or "the planet" (given its lack of distinguishing features), Mars is מאדים ''Ma'adim'' or "the red one", and Saturn is שבתאי ''Shabbatai'' or "the resting one" (in reference to its slow movement compared to the other visible planets). The odd one out is Jupiter, called צדק ''Tzedeq'' or "justice". Hebrew names were chosen for Uranus (אורון ''Oron'', "small light") and Neptune (רהב ''Rahab'', a Biblical sea monster) in 2009; prior to that the names "Uranus" and "Neptune" had simply been borrowed. The etymologies for the Arabic names of the planets are less well understood. Mostly agreed among scholars are Venus الزهرة (''az-Zuhara'', "the bright one"), Earth الأرض (''al-ʾArḍ'', from the same root as eretz), and Saturn زُحَل (''Zuḥal'', "withdrawer"). Multiple suggested etymologies exist for Mercury عُطَارِد (''ʿUṭārid''), Mars اَلْمِرِّيخ (''al-Mirrīkh''), and Jupiter المشتري (''al-Muštarī''), but there is no agreement among scholars. When subsequent planets were discovered in the 18th and 19th centuries, Uranus was named for a Greek deity and Neptune for a Roman one (the counterpart of
Poseidon Poseidon (; grc-gre, Ποσειδῶν) was one of the Twelve Olympians in ancient Greek religion and myth, god of the sea, storms, earthquakes and horses.Burkert 1985pp. 136–139 In pre-Olympian Bronze Age Greece, he was venerated as ...
). The asteroids were initially named from mythology as well – Ceres, Juno, and Vesta are major Roman goddesses, and Pallas is an epithet of the Greek goddess
Athena Athena or Athene, often given the epithet Pallas, is an ancient Greek goddess associated with wisdom, warfare, and handicraft who was later syncretized with the Roman goddess Minerva. Athena was regarded as the patron and protectress of v ...
– but as more and more were discovered, the mythological restriction was dropped starting from Massalia in 1852. Pluto was given a classical name, as it was considered a major planet when it was discovered. After more objects were discovered beyond Neptune, naming conventions depending on their orbits were put in place: those in the 2:3 resonance with Neptune (the plutinos) are given names from underworld myths, while others are given names from creation myths. Most of the trans-Neptunian dwarf planets are named after gods and goddesses from other cultures (e.g.
Quaoar Quaoar (50000 Quaoar), provisional designation , is a dwarf planet in the Kuiper belt, a region of icy planetesimals beyond Neptune. A non-resonant object ( cubewano), it measures approximately in diameter, about half the diameter of Pluto. Th ...
is named after a
Tongva The Tongva ( ) are an Indigenous people of California from the Los Angeles Basin and the Southern Channel Islands, an area covering approximately . Some descendants of the people prefer Kizh as an endonym that, they argue, is more historically ...
god), except for Orcus and Eris which continued the Roman and Greek scheme. The moons (including the planetary-mass ones) are generally given names with some association with their parent planet. The planetary-mass moons of Jupiter are named after four of Zeus' lovers (or other sexual partners); those of Saturn are named after Cronus' brothers and sisters, the Titans; those of Uranus are named after characters from
Shakespeare William Shakespeare ( 26 April 1564 – 23 April 1616) was an English playwright, poet and actor. He is widely regarded as the greatest writer in the English language and the world's pre-eminent dramatist. He is often called England's nation ...
and
Pope The pope ( la, papa, from el, πάππας, translit=pappas, 'father'), also known as supreme pontiff ( or ), Roman pontiff () or sovereign pontiff, is the bishop of Rome (or historically the patriarch of Rome), head of the worldwide Cathol ...
(originally specifically from fairy mythology, but that ended with the naming of Miranda). Neptune's planetary-mass moon Triton is named after the god's son; Pluto's planetary-mass moon Charon is named after the ferryman of the dead, who carries the souls of the newly deceased to the underworld (Pluto's domain); and Eris' only known moon Dysnomia is named after one of Eris' daughters, the spirit of lawlessness.


Symbols

The written symbols for Mercury, Venus, Jupiter, Saturn and possibly Mars have been traced to forms found in late Greek papyrus texts. The symbols for Jupiter and Saturn are identified as monograms of the corresponding Greek names, and the symbol for Mercury is a stylized caduceus. According to Annie Scott Dill Maunder, antecedents of the planetary symbols were used in art to represent the gods associated with the classical planets. ''Bianchini's planisphere'', discovered by Francesco Bianchini in the 18th century but produced in the 2nd century, shows Greek personifications of planetary gods charged with early versions of the planetary symbols. Mercury has a caduceus; Venus has, attached to her necklace, a cord connected to another necklace; Mars, a spear; Jupiter, a staff; Saturn, a scythe; the Sun, a circlet with rays radiating from it; and the Moon, a headdress with a crescent attached. The modern shapes with the cross-marks first appeared around the 16th century. According to Maunder, the addition of crosses appears to be "an attempt to give a savour of Christianity to the symbols of the old pagan gods." Earth itself was not considered a classical planet; its symbol descends from a pre-heliocentric symbol for the four corners of the world. When further planets were discovered orbiting the Sun, symbols were invented for them. The most common astronomical symbol for Uranus, ⛢, was invented by Johann Gottfried Köhler, and was intended to represent the newly discovered metal
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
. An alternative symbol, ♅, was invented by Jérôme Lalande, and represents a globe with a H on top, for Uranus' discoverer Herschel. Today, ⛢ is mostly used by astronomers and ♅ by astrologers, though it is possible to find each symbol in the other context. The first few asteroids were similarly given abstract symbols, but as their number rose further and further, this practice stopped in favour of numbering them instead. Neptune's symbol (♆) represents the god's trident. The astronomical symbol for Pluto is a P-L monogram (♇), though it has become less common since the IAU definition reclassified Pluto. Since Pluto's reclassification,
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
has used the traditional astrological symbol of Pluto (⯓), a planetary orb over Pluto's bident. The IAU discourages the use of planetary symbols in modern journal articles in favour of one-letter or (to disambiguate Mercury and Mars) two-letter abbreviations for the major planets. The symbols for the Sun and Earth are nonetheless common, as solar mass, Earth mass and similar units are common in astronomy. Other planetary symbols today are mostly encountered in astrology. Astrologers have started reusing the old astronomical symbols for the first few asteroids, and continue to invent symbols for other objects, though most proposed symbols are only used by their proposers.
Unicode Unicode, formally The Unicode Standard,The formal version reference is is an information technology standard for the consistent encoding, representation, and handling of text expressed in most of the world's writing systems. The standard, ...
includes some relatively standard astrological symbols for some minor planets, including the dwarf planets discovered in the 21st century, though astronomical use of any of them is rare.


Formation

It is not known with certainty how planets are built. The prevailing theory is that they are formed during the collapse of a nebula into a thin disk of gas and dust. A protostar forms at the core, surrounded by a rotating protoplanetary disk. Through
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
(a process of sticky collision) dust particles in the disk steadily accumulate mass to form ever-larger bodies. Local concentrations of mass known as
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System ...
s form, and these accelerate the accretion process by drawing in additional material by their gravitational attraction. These concentrations become ever denser until they collapse inward under gravity to form protoplanets. After a planet reaches a mass somewhat larger than Mars' mass, it begins to accumulate an extended atmosphere, greatly increasing the capture rate of the planetesimals by means of atmospheric drag. Depending on the accretion history of solids and gas, a giant planet, an
ice giant An ice giant is a giant planet composed mainly of elements heavier than hydrogen and helium, such as oxygen, carbon, nitrogen, and sulfur. There are two ice giants in the Solar System: Uranus and Neptune. In astrophysics and planetary ...
, or a terrestrial planet may result. It is thought that the regular satellites of Jupiter, Saturn, and Uranus formed in a similar way; however, Triton was likely captured by Neptune, and Earth's Moon and Pluto's Charon might have formed in collisions. When the protostar has grown such that it ignites to form a
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
, the surviving disk is removed from the inside outward by photoevaporation, the solar wind, Poynting–Robertson drag and other effects. Thereafter there still may be many protoplanets orbiting the star or each other, but over time many will collide, either to form a larger, combined protoplanet or release material for other protoplanets to absorb. Those objects that have become massive enough will capture most matter in their orbital neighbourhoods to become planets. Protoplanets that have avoided collisions may become natural satellites of planets through a process of gravitational capture, or remain in belts of other objects to become either dwarf planets or small bodies. The energetic impacts of the smaller planetesimals (as well as radioactive decay) will heat up the growing planet, causing it to at least partially melt. The interior of the planet begins to differentiate by density, with higher density materials sinking toward the core. Smaller terrestrial planets lose most of their atmospheres because of this accretion, but the lost gases can be replaced by outgassing from the mantle and from the subsequent impact of
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ...
s. (Smaller planets will lose any atmosphere they gain through various escape mechanisms.) With the discovery and observation of planetary systems around stars other than the Sun, it is becoming possible to elaborate, revise or even replace this account. The level of metallicity—an astronomical term describing the abundance of
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
s with an
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
greater than 2 (
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
)—appears to determine the likelihood that a star will have planets. Hence, a metal-rich population I star is more likely to have a substantial planetary system than a metal-poor, population II star.


Solar System

According to the IAU definition, there are eight planets in the Solar System, which are (in increasing distance from the Sun): Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Jupiter is the largest, at 318 Earth masses, whereas Mercury is the smallest, at 0.055 Earth masses. The planets of the Solar System can be divided into categories based on their composition. Terrestrials are similar to Earth, with bodies largely composed of rock and metal: Mercury, Venus, Earth, and Mars. Earth is the largest terrestrial planet. Giant planets are significantly more massive than the terrestrials: Jupiter, Saturn, Uranus, and Neptune. They differ from the terrestrial planets in composition. The gas giants, Jupiter and Saturn, are primarily composed of hydrogen and helium and are the most massive planets in the Solar System. Saturn is one third as massive as Jupiter, at 95 Earth masses. The
ice giant An ice giant is a giant planet composed mainly of elements heavier than hydrogen and helium, such as oxygen, carbon, nitrogen, and sulfur. There are two ice giants in the Solar System: Uranus and Neptune. In astrophysics and planetary ...
s, Uranus and Neptune, are primarily composed of low-boiling-point materials such as water, methane, and ammonia, with thick atmospheres of hydrogen and helium. They have a significantly lower mass than the gas giants (only 14 and 17 Earth masses). Dwarf planets are gravitationally rounded, but have not cleared their orbits of other
bodies Bodies may refer to: * The plural of body * ''Bodies'' (2004 TV series), BBC television programme * Bodies (upcoming TV series), an upcoming British crime thriller limited series * "Bodies" (''Law & Order''), 2003 episode of ''Law & Order'' * B ...
. In increasing order of average distance from the Sun, the ones generally agreed among astronomers are , , , , , , , and . Ceres is the largest object in the asteroid belt, located between the orbits of Mars and Jupiter. The other eight all orbit beyond Neptune. Orcus, Pluto, Haumea, Quaoar, and Makemake orbit in the Kuiper belt, which is a second belt of small Solar System bodies beyond the orbit of Neptune. Gonggong and Eris orbit in the scattered disc, which is somewhat further out and, unlike the Kuiper belt, is unstable towards interactions with Neptune. Sedna is the largest known
detached object Detached objects are a dynamical class of minor planets in the outer reaches of the Solar System and belong to the broader family of trans-Neptunian objects (TNOs). These objects have orbits whose points of closest approach to the Sun ( perihel ...
, a population that never comes close enough to the Sun to interact with any of the classical planets; the origins of their orbits are still being debated. All nine are similar to terrestrial planets in having a solid surface, but they are made of ice and rock, rather than rock and metal. Moreover, all of them are smaller than Mercury, with Pluto being the largest known dwarf planet, and Eris being the most massive known. There are at least twenty planetary-mass moons or satellite planets—moons large enough to take on ellipsoidal shapes (though Dysnomia's shape has never been measured, it is massive and dense enough to be a solid body). The twenty generally agreed are as follows. * One satellite of Earth: the Moon * Four satellites of Jupiter: Io,
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Clif ...
, Ganymede, and Callisto * Seven satellites of Saturn: Mimas, Enceladus, Tethys, Dione, Rhea,
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
, and Iapetus * Five satellites of Uranus: Miranda, Ariel, Umbriel, Titania, and Oberon * One satellite of Neptune:
Triton Triton commonly refers to: * Triton (mythology), a Greek god * Triton (moon), a satellite of Neptune Triton may also refer to: Biology * Triton cockatoo, a parrot * Triton (gastropod), a group of sea snails * ''Triton'', a synonym of ''Triturus'' ...
* One satellite of Pluto: Charon * One satellite of Eris: Dysnomia The Moon, Io, and Europa have compositions similar to the terrestrial planets; the others are made of ice and rock like the dwarf planets, with Tethys being made of almost pure ice. (Europa is often considered an icy planet, though, because its surface ice layer makes it difficult to study its interior.) Ganymede and Titan are larger than Mercury by radius, and Callisto almost equals it, but all three are much less massive. Mimas is the smallest object generally agreed to be a geophysical planet, at about six millionths of Earth's mass, though there are many larger bodies that may not be geophysical planets (e.g. ).


Planetary attributes

The tables below summarise some properties of objects generally agreed to satisfy geophysical planet definitions. There are many smaller dwarf planet candidates, such as Salacia, that have not been included in the tables because astronomers disagree on whether or not they are dwarf planets. The diameters, masses, orbital periods, and rotation periods of the major planets are available from the
Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a Federally funded research and development centers, federally funded research and development center and NASA field center in the City of La Cañada Flintridge, California, La Cañada Flintridge, California ...
. JPL also provides their semi-major axes, inclinations, and eccentricities of planetary orbits, and the axial tilts are taken from their Horizons database. Other information is summarized by NASA. The data for the dwarf planets and planetary-mass moons is taken from list of gravitationally rounded objects of the Solar System, with sources listed there. As all the planetary-mass moons exhibit synchronous rotation, their rotation periods equal their orbital periods.


Exoplanets

An exoplanet (extrasolar planet) is a planet outside the Solar System. Known exoplanets range in size from gas giants about twice as large as Jupiter down to just over the size of the Moon. Analysis of gravitational microlensing data suggests a minimum average of 1.6 bound planets for every star in the Milky Way. In early 1992, radio astronomers
Aleksander Wolszczan Aleksander Wolszczan (born 29 April 1946) is a Polish astronomer. He is the co-discoverer of the first confirmed extrasolar planets and pulsar planets. Early life and education Wolszczan was born on 29 April 1946 in Szczecinek located in pre ...
and Dale Frail announced the discovery of two planets orbiting the pulsar PSR 1257+12. This discovery was confirmed, and is generally considered to be the first definitive detection of exoplanets. Researchers suspect they formed from a disk remnant left over from the
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
that produced the pulsar. The first confirmed discovery of an extrasolar planet orbiting an ordinary main-sequence star occurred on 6 October 1995, when
Michel Mayor Michel Gustave Édouard Mayor (; born 12 January 1942) is a Swiss astrophysicist and professor emeritus at the University of Geneva's Department of Astronomy. He formally retired in 2007, but remains active as a researcher at the Observatory ...
and Didier Queloz of the University of Geneva announced the detection of
51 Pegasi b 51 Pegasi b, officially named Dimidium , and formerly unofficially dubbed Bellerophon , is an extrasolar planet approximately away in the constellation of Pegasus. It was the first exoplanet to be discovered orbiting a main-sequence star, the ...
, an exoplanet around 51 Pegasi. From then until the Kepler mission most known extrasolar planets were gas giants comparable in mass to Jupiter or larger as they were more easily detected. The catalog of Kepler candidate planets consists mostly of planets the size of Neptune and smaller, down to smaller than Mercury. In 2011, the
Kepler Space Telescope The Kepler space telescope is a disused space telescope launched by NASA in 2009 to discover Earth-sized planets orbiting other stars. Named after astronomer Johannes Kepler, the spacecraft was launched into an Earth-trailing heliocentric o ...
team reported the discovery of the first Earth-sized extrasolar planets orbiting a Sun-like star,
Kepler-20e Kepler-20e is an exoplanet orbiting Kepler-20. The planet is notable as it is the first planet with a smaller radius than Earth found orbiting a Sun-like star. The planet is second-closest to the star after Kepler-20b, and at , it is far too ho ...
and Kepler-20f. Since that time, more than 100 planets have been identified that are approximately the same size as Earth, 20 of which orbit in the habitable zone of their star – the range of orbits where a terrestrial planet could sustain liquid water on its surface, given enough atmospheric pressure. One in five Sun-like stars is thought to have an Earth-sized planet in its habitable zone, which suggests that the nearest would be expected to be within 12 light-years distance from Earth. The frequency of occurrence of such terrestrial planets is one of the variables in the Drake equation, which estimates the number of intelligent, communicating civilizations that exist in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
. There are types of planets that do not exist in the Solar System: super-Earths and
mini-Neptune A Mini-Neptune (sometimes known as a gas dwarf or transitional planet) is a planet less massive than Neptune but resembling Neptune in that it has a thick hydrogen–helium atmosphere, probably with deep layers of ice, rock or liquid oceans (made ...
s, which have masses between that of Earth and Neptune. Such planets could be rocky like Earth or a mixture of volatiles and gas like Neptune—the dividing line between the two possibilities is currently thought to occur at about twice the mass of Earth. The planet
Gliese 581c Gliese 581c (Gl 581c or GJ 581c) is a planet orbiting within the Gliese 581 system. It is the second planet discovered in the system and the third in order from the star. With a mass at least 5.5 times that of the Earth, it is classified as a s ...
, with mass 5.5–10.4 times the mass of Earth, attracted attention upon its discovery for potentially being in the habitable zone, though later studies concluded that it is actually too close to its star to be habitable. Exoplanets have been found that are much closer to their parent star than any planet in the Solar System is to the Sun. Mercury, the closest planet to the Sun at 0.4 AU, takes 88 days for an orbit, but ultra-short period planets can orbit in less than a day. The
Kepler-11 Kepler-11, also designated as 2MASS J19482762+4154328, is a Sun-like star slightly larger than the Sun in the constellation Cygnus, located some 2,150 light years from Earth. It is located within the field of vision of the Kepler spac ...
system has five of its planets in shorter orbits than Mercury's, all of them much more massive than Mercury. There are
hot Jupiter Hot Jupiters (sometimes called hot Saturns) are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter but that have very short orbital periods (). The close proximity to their stars and high surface-atmosphere t ...
s, such as 51 Pegasi b, that orbit very close to their star and may evaporate to become chthonian planets, which are the leftover cores. There are also exoplanets that are much farther from their star. Neptune is 30 AU from the Sun and takes 165 years to orbit, but there are exoplanets that are thousands of AU from their star and take more than a million years to orbit. e.g. COCONUTS-2b.


Attributes

Although each planet has unique physical characteristics, a number of broad commonalities do exist among them. Some of these characteristics, such as rings or natural satellites, have only as yet been observed in planets in the Solar System, whereas others are commonly observed in extrasolar planets.


Dynamic characteristics


Orbit

In the Solar System, all the planets orbit the Sun in the same direction as the Sun rotates: counter-clockwise as seen from above the Sun's north pole. At least one extrasolar planet, WASP-17b, has been found to orbit in the opposite direction to its star's rotation. The period of one revolution of a planet's orbit is known as its sidereal period or ''year''. A planet's year depends on its distance from its star; the farther a planet is from its star, the longer the distance it must travel and the slower its speed, since it is less affected by its star's
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. No planet's orbit is perfectly circular, and hence the distance of each from the host star varies over the course of its year. The closest approach to its star is called its
periastron An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any el ...
, or perihelion in the Solar System, whereas its farthest separation from the star is called its apastron ( aphelion). As a planet approaches periastron, its speed increases as it trades gravitational potential energy for kinetic energy, just as a falling object on Earth accelerates as it falls. As the planet nears apastron, its speed decreases, just as an object thrown upwards on Earth slows down as it reaches the apex of its trajectory. Each planet's orbit is delineated by a set of elements: * The '' eccentricity'' of an orbit describes the elongation of a planet's elliptical (oval) orbit. Planets with low eccentricities have more circular orbits, whereas planets with high eccentricities have more elliptical orbits. The planets and large moons in the Solar System have relatively low eccentricities, and thus nearly circular orbits. The comets and many Kuiper belt objects, as well as several extrasolar planets, have very high eccentricities, and thus exceedingly elliptical orbits. * The '' semi-major axis'' gives the size of the orbit. It is the distance from the midpoint to the longest diameter of its elliptical orbit. This distance is not the same as its apastron, because no planet's orbit has its star at its exact centre. * The ''
inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Ea ...
'' of a planet tells how far above or below an established reference plane its orbit is tilted. In the Solar System, the reference plane is the plane of Earth's orbit, called the ecliptic. For extrasolar planets, the plane, known as the ''sky plane'' or ''plane of the sky'', is the plane perpendicular to the observer's line of sight from Earth. The eight planets of the Solar System all lie very close to the ecliptic; comets and Kuiper belt objects like Pluto are at far more extreme angles to it. The large moons are generally not very inclined to their parent planets' equators, but Earth's Moon, Saturn's Iapetus, and Neptune's Triton are exceptions. Triton is unique among the large moons in that it orbits retrograde, i.e. in the direction opposite to its parent planet's rotation. * The points at which a planet crosses above and below its reference plane are called its
ascending ''Ascending'' is a science fiction novel by the Canadian writer James Alan Gardner, published in 2001 by HarperCollins Publishers under its various imprints.HarperCollins, Avon, HarperCollins Canada, SFBC/Avon; paperback edition 2001, Eos Books. ...
and
descending node An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes. Planes of reference Common planes of reference ...
s. The longitude of the ascending node is the angle between the reference plane's 0 longitude and the planet's ascending node. The argument of periapsis (or perihelion in the Solar System) is the angle between a planet's ascending node and its closest approach to its star.


Axial tilt

Planets have varying degrees of axial tilt; they spin at an angle to the plane of their stars' equators. This causes the amount of light received by each hemisphere to vary over the course of its year; when the northern hemisphere points away from its star, the southern hemisphere points towards it, and vice versa. Each planet therefore has seasons, resulting in changes to the climate over the course of its year. The time at which each hemisphere points farthest or nearest from its star is known as its
solstice A solstice is an event that occurs when the Sun appears to reach its most northerly or southerly excursion relative to the celestial equator on the celestial sphere. Two solstices occur annually, around June 21 and December 21. In many count ...
. Each planet has two in the course of its orbit; when one hemisphere has its summer solstice with its day being the longest, the other has its winter solstice when its day is shortest. The varying amount of light and heat received by each hemisphere creates annual changes in weather patterns for each half of the planet. Jupiter's axial tilt is very small, so its seasonal variation is minimal; Uranus, on the other hand, has an axial tilt so extreme it is virtually on its side, which means that its hemispheres are either continually in sunlight or continually in darkness around the time of its solstices. Among extrasolar planets, axial tilts are not known for certain, though most hot Jupiters are believed to have a negligible axial tilt as a result of their proximity to their stars.


Rotation

The planets rotate around invisible axes through their centres. A planet's rotation period is known as a stellar day. Most of the planets in the Solar System rotate in the same direction as they orbit the Sun, which is counter-clockwise as seen from above the Sun's
north pole The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where the Earth's axis of rotation meets its surface. It is called the True North Pole to distinguish from the Ma ...
. The exceptions are Venus and Uranus, which rotate clockwise, though Uranus's extreme axial tilt means there are differing conventions on which of its poles is "north", and therefore whether it is rotating clockwise or anti-clockwise. Regardless of which convention is used, Uranus has a retrograde rotation relative to its orbit. The rotation of a planet can be induced by several factors during formation. A net
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
can be induced by the individual angular momentum contributions of accreted objects. The accretion of gas by the giant planets contributes to the angular momentum. Finally, during the last stages of planet building, a stochastic process of protoplanetary accretion can randomly alter the spin axis of the planet. There is great variation in the length of day between the planets, with Venus taking 243
days A day is the time period of a full rotation of the Earth with respect to the Sun. On average, this is 24 hours, 1440 minutes, or 86,400 seconds. In everyday life, the word "day" often refers to a solar day, which is the length between two ...
to rotate, and the giant planets only a few hours. The rotational periods of extrasolar planets are not known, but for
hot Jupiter Hot Jupiters (sometimes called hot Saturns) are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter but that have very short orbital periods (). The close proximity to their stars and high surface-atmosphere t ...
s, their proximity to their stars means that they are tidally locked (that is, their orbits are in sync with their rotations). This means, they always show one face to their stars, with one side in perpetual day, the other in perpetual night. Mercury and Venus, the closest planets to the Sun, similarly exhibit very slow rotation: Mercury is tidally locked into a 3:2 spin–orbit resonance (rotating three times for every two revolutions around the Sun), and Venus' rotation may be in equilibrium between tidal forces slowing it down and atmospheric tides created by solar heating speeding it up. All the large moons are tidally locked to their parent planets; Pluto and Charon are tidally locked to each other, as are Eris and Dysnomia. The other dwarf planets with known rotation periods rotate faster than Earth; Haumea rotates so fast that it has been distorted into a triaxial ellipsoid. The exoplanet Tau Boötis b and its parent star Tau Boötis appear to be mutually tidally locked.


Orbital clearing

The defining dynamic characteristic of a planet, according to the IAU definition, is that it has ''cleared its neighborhood''. A planet that has cleared its neighborhood has accumulated enough mass to gather up or sweep away all the
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System ...
s in its orbit. In effect, it orbits its star in isolation, as opposed to sharing its orbit with a multitude of similar-sized objects. As described above, this characteristic was mandated as part of the IAU's official definition of a planet in August 2006. Although to date this criterion only applies to the Solar System, a number of young extrasolar systems have been found in which evidence suggests orbital clearing is taking place within their
circumstellar disc A circumstellar disc (or circumstellar disk) is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the reser ...
s.


Physical characteristics


Size and shape

Gravity causes planets to be pulled into a roughly spherical shape, so a planet's size can be expressed roughly by an average radius (for example,
Earth radius Earth radius (denoted as ''R''🜨 or R_E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid, the radius ranges from a maximum of nearly (equatorial radius, den ...
or Jupiter radius). However, planets are not perfectly spherical; for example, the Earth's rotation causes it to be slightly flattened at the poles with a bulge around the equator. Therefore, a better approximation of Earth's shape is an oblate spheroid, whose equatorial diameter is larger than the pole-to-pole diameter. Generally, a planet's shape may be described by giving polar and equatorial radii of a spheroid or specifying a reference ellipsoid. From such a specification, the planet's flattening, surface area, and volume can be calculated; its
normal gravity In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of the true gravity on Earth's surface by means of a mathematical model representing Earth. The most common model of a smoothed Earth is a rotating Earth ellips ...
can be computed knowing its size, shape, rotation rate and mass.


Mass

A planet's defining physical characteristic is that it is massive enough for the force of its own gravity to dominate over the electromagnetic forces binding its physical structure, leading to a state of
hydrostatic equilibrium In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planeta ...
. This effectively means that all planets are spherical or spheroidal. Up to a certain mass, an object can be irregular in shape, but beyond that point, which varies depending on the chemical makeup of the object, gravity begins to pull an object towards its own centre of mass until the object collapses into a sphere. Mass is the prime attribute by which planets are distinguished from stars. While the lower stellar mass limit is estimated to be around 75 times that of Jupiter (), the upper planetary mass limit for planethood is only roughly 13 for objects with solar-type isotopic abundance, beyond which it achieves conditions suitable for nuclear fusion of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
. Other than the Sun, no objects of such mass exist in the Solar System; but there are exoplanets of this size. The 13 limit is not universally agreed upon and the Extrasolar Planets Encyclopaedia includes objects up to 60 , and the Exoplanet Data Explorer up to 24 . The smallest known exoplanet with an accurately known mass is PSR B1257+12A, one of the first extrasolar planets discovered, which was found in 1992 in orbit around a pulsar. Its mass is roughly half that of the planet Mercury. Even smaller is WD 1145+017 b, orbiting a white dwarf; its mass is roughly that of the dwarf planet Haumea, and it is typically termed a minor planet. The smallest known planet orbiting a main-sequence star other than the Sun is Kepler-37b, with a mass (and radius) that is probably slightly higher than that of the Moon.


Internal differentiation

Every planet began its existence in an entirely fluid state; in early formation, the denser, heavier materials sank to the centre, leaving the lighter materials near the surface. Each therefore has a differentiated interior consisting of a dense planetary core surrounded by a
mantle A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that. Mantle may refer to: *Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear **Mantle (vesture), an Eastern Orthodox ve ...
that either is or was a fluid. The terrestrial planets' mantles are sealed within hard crusts, but in the giant planets the mantle simply blends into the upper cloud layers. The terrestrial planets have cores of elements such as
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
and
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow t ...
, and mantles of silicates. Jupiter and Saturn are believed to have cores of rock and metal surrounded by mantles of metallic hydrogen. Uranus and Neptune, which are smaller, have rocky cores surrounded by mantles of
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
,
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous ...
,
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
and other ices. The fluid action within these planets' cores creates a geodynamo that generates a magnetic field. Similar differentiation processes are believed to have occurred on some of the large moons and dwarf planets, though the process may not always have been completed: Ceres, Callisto, and Titan appear to be incompletely differentiated.


Atmosphere

All of the Solar System planets except Mercury have substantial atmospheres because their gravity is strong enough to keep gases close to the surface. Saturn's largest moon
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
also has a substantial atmosphere thicker than that of Earth; Neptune's largest moon
Triton Triton commonly refers to: * Triton (mythology), a Greek god * Triton (moon), a satellite of Neptune Triton may also refer to: Biology * Triton cockatoo, a parrot * Triton (gastropod), a group of sea snails * ''Triton'', a synonym of ''Triturus'' ...
and the dwarf planet
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the S ...
have more tenuous atmospheres. The larger giant planets are massive enough to keep large amounts of the light gases hydrogen and helium, whereas the smaller planets lose these gases into
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consi ...
. The composition of Earth's atmosphere is different from the other planets because the various life processes that have transpired on the planet have introduced free molecular
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
. Planetary atmospheres are affected by the varying insolation or internal energy, leading to the formation of dynamic
weather system In meteorology, a low-pressure area, low area or low is a region where the atmospheric pressure is lower than that of surrounding locations. Low-pressure areas are commonly associated with inclement weather (such as cloudy, windy, with possible ...
s such as
hurricane A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Dep ...
s (on Earth), planet-wide
dust storm A dust storm, also called a sandstorm, is a meteorological phenomenon common in arid and semi-arid regions. Dust storms arise when a gust front or other strong wind blows loose sand and dirt from a dry surface. Fine particles are transp ...
s (on Mars), a greater-than-Earth-sized
anticyclone An anticyclone is a weather phenomenon defined as a large-scale circulation of winds around a central region of high atmospheric pressure, clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere as viewed from ...
on Jupiter (called the Great Red Spot), and holes in the atmosphere (on Neptune). Weather patterns detected on exoplanets include a hot region on HD 189733 b twice the size of the Great Red Spot, * as well as
cloud In meteorology, a cloud is an aerosol consisting of a visible mass of miniature liquid droplets, frozen crystals, or other particles suspended in the atmosphere of a planetary body or similar space. Water or various other chemicals may ...
s on the hot Jupiter Kepler-7b, the super-Earth Gliese 1214 b and others. Hot Jupiters, due to their extreme proximities to their host stars, have been shown to be losing their atmospheres into space due to stellar radiation, much like the tails of comets. These planets may have vast differences in temperature between their day and night sides that produce supersonic winds, although multiple factors are involved and the details of the atmospheric dynamics that affect the day-night temperature difference are complex.


Magnetosphere

One important characteristic of the planets is their intrinsic
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electroma ...
s, which in turn give rise to magnetospheres. The presence of a magnetic field indicates that the planet is still geologically alive. In other words, magnetized planets have flows of
electrically conducting Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
material in their interiors, which generate their magnetic fields. These fields significantly change the interaction of the planet and solar wind. A magnetized planet creates a cavity in the solar wind around itself called the magnetosphere, which the wind cannot penetrate. The magnetosphere can be much larger than the planet itself. In contrast, non-magnetized planets have only small magnetospheres induced by interaction of the ionosphere with the solar wind, which cannot effectively protect the planet. Of the eight planets in the Solar System, only Venus and Mars lack such a magnetic field. Of the magnetized planets the magnetic field of Mercury is the weakest, and is barely able to deflect the solar wind. Jupiter's moon Ganymede has a magnetic field several times stronger, and Jupiter's is the strongest in the Solar System (so intense in fact that it poses a serious health risk to future crewed missions to all its moons inward of Callisto). The magnetic fields of the other giant planets, measured at their surfaces, are roughly similar in strength to that of Earth, but their magnetic moments are significantly larger. The magnetic fields of Uranus and Neptune are strongly tilted relative to the planets' rotational axes and displaced from the planets' centres. In 2003, a team of astronomers in Hawaii observing the star HD 179949 detected a bright spot on its surface, apparently created by the magnetosphere of an orbiting hot Jupiter.


Secondary characteristics

Several planets or dwarf planets in the Solar System (such as Neptune and Pluto) have orbital periods that are in
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscil ...
with each other or with smaller bodies. This is common in satellite systems (e.g. the resonance between Io, Europa, and Ganymede around Jupiter, or between Enceladus and Dione around Saturn). All except Mercury and Venus have natural satellites, often called "moons". Earth has one, Mars has two, and the giant planets have numerous moons in complex planetary-type systems. Except for Ceres and Sedna, all the consensus dwarf planets are known to have at least one moon as well. Many moons of the giant planets have features similar to those on the terrestrial planets and dwarf planets, and some have been studied as possible abodes of life (especially
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Clif ...
and Enceladus). The four giant planets are orbited by
planetary ring A ring system is a disc or ring, orbiting an astronomical object, that is composed of solid material such as dust and moonlets, and is a common component of satellite systems around giant planets. A ring system around a planet is also known ...
s of varying size and complexity. The rings are composed primarily of dust or particulate matter, but can host tiny '
moonlets A moonlet, minor moon, minor natural satellite, or minor satellite is a particularly small natural satellite orbiting a planet, dwarf planet, or other minor planet. Up until 1995, moonlets were only hypothetical components of Saturn's F-ring ...
' whose gravity shapes and maintains their structure. Although the origins of planetary rings is not precisely known, they are believed to be the result of natural satellites that fell below their parent planet's Roche limit and were torn apart by tidal forces. The dwarf planet Haumea also has a ring. No secondary characteristics have been observed around extrasolar planets. The
sub-brown dwarf A sub-brown dwarf or planetary-mass brown dwarf is an astronomical object that formed in the same manner as stars and brown dwarfs (i.e. through the collapse of a gas cloud) but that has a planetary mass, therefore by definition below the limi ...
Cha 110913-773444, which has been described as a rogue planet, is believed to be orbited by a tiny protoplanetary disc * and the sub-brown dwarf OTS 44 was shown to be surrounded by a substantial protoplanetary disk of at least 10 Earth masses.


See also

* * List of landings on extraterrestrial bodies * Lists of planets – A list of lists of planets sorted by diverse attributes * * * *


Notes


References


External links


Photojournal NASA

''Planetary Science Research Discoveries''
(educational site with illustrated articles) {{Featured article Observational astronomy Planetary science Concepts in astronomy