HOME

TheInfoList



OR:

The mathematical term perverse sheaves refers to a certain
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of ...
associated to a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
''X'', which may be a real or complex
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
, or a more general topologically stratified space, usually singular. This concept was introduced in the thesis of
Zoghman Mebkhout Zoghman Mebkhout (born 1949 ) (مبخوت زغمان) is a French-Algerian mathematician. He is known for his work in algebraic analysis, geometry and representation theory, more precisely on the theory of ''D''-modules. Career Mebkhout is cu ...
, gaining more popularity after the (independent) work of
Joseph Bernstein Joseph Bernstein (sometimes spelled I. N. Bernshtein; he, יוס(י)ף נאומוביץ ברנשטיין; russian: Иосиф Наумович Бернштейн; born 18 April 1945) is a Soviet-born Israeli mathematician working at Tel Aviv Un ...
,
Alexander Beilinson Alexander A. Beilinson (born 1957) is the David and Mary Winton Green University professor at the University of Chicago and works on mathematics. His research has spanned representation theory, algebraic geometry and mathematical physics. In 1 ...
, and
Pierre Deligne Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord P ...
(1982) as a formalisation of the Riemann-Hilbert correspondence, which related the topology of singular spaces (
intersection homology In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them ov ...
of Mark Goresky and Robert MacPherson) and the algebraic theory of differential equations ( microlocal calculus and holonomic
D-module In mathematics, a ''D''-module is a module over a ring ''D'' of differential operators. The major interest of such ''D''-modules is as an approach to the theory of linear partial differential equations. Since around 1970, ''D''-module theory has ...
s of
Joseph Bernstein Joseph Bernstein (sometimes spelled I. N. Bernshtein; he, יוס(י)ף נאומוביץ ברנשטיין; russian: Иосиф Наумович Бернштейн; born 18 April 1945) is a Soviet-born Israeli mathematician working at Tel Aviv Un ...
,
Masaki Kashiwara is a Japanese mathematician. He was a student of Mikio Sato at the University of Tokyo. Kashiwara made leading contributions towards algebraic analysis, microlocal analysis, ''D''-module theory, Hodge theory, sheaf theory and representati ...
and Takahiro Kawai). It was clear from the outset that perverse sheaves are fundamental mathematical objects at the crossroads of
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
,
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, analysis and
differential equations In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
. They also play an important role in
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Ma ...
, algebra, and
representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
. The properties characterizing perverse sheaves already appeared in the 75's paper of Kashiwara on the constructibility of solutions of holonomic
D-module In mathematics, a ''D''-module is a module over a ring ''D'' of differential operators. The major interest of such ''D''-modules is as an approach to the theory of linear partial differential equations. Since around 1970, ''D''-module theory has ...
s.


Preliminary remarks

The name ''perverse sheaf'' comes through rough translation of the French "faisceaux pervers". The justification is that perverse sheaves are complexes of sheaves which have several features in common with sheaves: they form an abelian category, they have
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be view ...
, and to construct one, it suffices to construct it locally everywhere. The adjective "pervers" originates in the
intersection homology In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them ov ...
theory, and its origin was explained by . The Beilinson–Bernstein–Deligne definition of a perverse sheaf proceeds through the machinery of
triangulated categories In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy cat ...
in
homological algebra Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topolo ...
and has a very strong algebraic flavour, although the main examples arising from Goresky–MacPherson theory are topological in nature because the simple objects in the category of perverse sheaves are the intersection cohomology complexes. This motivated MacPherson to recast the whole theory in geometric terms on a basis of
Morse theory In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiab ...
. For many applications in representation theory, perverse sheaves can be treated as a 'black box', a category with certain formal properties.


Definition and examples

A perverse sheaf is an object ''C'' of the bounded
derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pr ...
of sheaves with constructible cohomology on a space ''X'' such that the set of points ''x'' with :H^(j_x^*C)\ne 0 or H^(j_x^!C)\ne 0 has real dimension at most 2''i'', for all ''i''. Here ''j''''x'' is the inclusion map of the point ''x''. If ''X'' is smooth and everywhere of dimension ''d'', then :\mathcal F /math> is a perverse sheaf for any
local system In mathematics, a local system (or a system of local coefficients) on a topological space ''X'' is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group ''A'', and general sheaf cohomology ...
\mathcal F. If ''X'' is a flat, locally complete intersection (for example, regular) scheme over a henselian
discrete valuation ring In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain ''R'' which satisfies any one of the following equivalent conditions: # ''R'' i ...
, then the constant sheaf shifted by \dim X+1 is an étale perverse sheaf.


A simple example

Let ''X'' be a disk around the origin in \mathbb stratified so that the origin is the unique singular stratum. Then the category of perverse sheaves on ''X'' is equivalent to the category of diagrams of vector spaces V \overset\underset\rightleftarrows W where \operatorname - u \circ v and \operatorname - v \circ u are invertible. More generally, quivers can be used to describe perverse sheaves.


Properties

The category of perverse sheaves is an abelian subcategory of the (non-abelian) derived category of sheaves, equal to the core of a suitable t-structure, and is preserved by
Verdier duality In mathematics, Verdier duality is a cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by as an analog for locally compact topological spaces of Alexander Groth ...
. The bounded derived category of perverse l-adic sheaves on a scheme ''X'' is equivalent to the derived category of constructible sheaves and similarly for sheaves on the complex analytic space associated to a scheme ''X''/C.


Applications

Perverse sheaves are a fundamental tool for the geometry of singular spaces. Therefore, they are applied in a variety of mathematical areas. In the Riemann-Hilbert correspondence, perverse sheaves correspond to regular holonomic
D-module In mathematics, a ''D''-module is a module over a ring ''D'' of differential operators. The major interest of such ''D''-modules is as an approach to the theory of linear partial differential equations. Since around 1970, ''D''-module theory has ...
s. This application establishes the notion of perverse sheaf as occurring 'in nature'. The decomposition theorem, a far-reaching extension of the hard Lefschetz theorem decomposition, requires the usage of perverse sheaves. Hodge modules are, roughly speaking, a Hodge-theoretic refinement of perverse sheaves. The geometric Satake equivalence identifies equivariant perverse sheaves on the
affine Grassmannian In mathematics, the affine Grassmannian of an algebraic group ''G'' over a field ''k'' is an ind-scheme—a colimit of finite-dimensional schemes—which can be thought of as a flag variety for the loop group ''G''(''k''((''t''))) and which desc ...
Gr_G with representations of the
Langlands dual In representation theory, a branch of mathematics, the Langlands dual ''L'G'' of a reductive algebraic group ''G'' (also called the ''L''-group of ''G'') is a group that controls the representation theory of ''G''. If ''G'' is defined over a fie ...
group of a
reductive group In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direct ...
''G'' - see . A proof of the
Weil conjectures In mathematics, the Weil conjectures were highly influential proposals by . They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory. Th ...
using perverse sheaves is given in .


String theory

Massless fields in superstring compactifications have been identified with
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be view ...
classes on the target space (i.e. four-dimensional
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
with a six-dimensional Calabi-Yau (CY) manifold). The determination of the matter and interaction content requires a detailed analysis of the (co)homology of these spaces: nearly all massless fields in the effective
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
model are represented by certain (co)homology elements. However, a troubling consequence occurs when the target space is
singular Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular homology * SINGULAR, an open source Computer Algebra System (CAS) * Singular or sounder, a group of boar ...
. A singular target space means that only the CY manifold is singular as Minkowski space is smooth. Such a singular CY manifold is called a
conifold In mathematics and string theory, a conifold is a generalization of a manifold. Unlike manifolds, conifolds can contain conical singularities, i.e. points whose neighbourhoods look like cones over a certain base. In physics, in particular in fl ...
as it is a CY manifold that admits conical singularities.
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
observed (A. Strominger, 1995) that conifolds correspond to massless blackholes. Conifolds are important objects in string theory:
Brian Greene Brian Randolph Greene (born February 9, 1963) is a American theoretical physicist, mathematician, and string theorist. Greene was a physics professor at Cornell University from 19901995, and has been a professor at Columbia University sinc ...
explains the physics of conifolds in Chapter 13 of his book
The Elegant Universe ''The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory'' is a book by Brian Greene published in 1999, which introduces string and superstring theory, and provides a comprehensive though non-technical assess ...
—including the fact that the space can tear near the cone, and its
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
can change. These singular target spaces, i.e. conifolds, correspond to certain mild degenerations of
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
which appear in a large class of supersymmetric theories, including superstring theory (E. Witten, 1982). Essentially, different cohomology theories on singular target spaces yield different results thereby making it difficult to determine which theory physics may favor. Several important characteristics of the cohomology, which correspond to the massless fields, are based on general properties of field theories, specifically, the (2,2)-supersymmetric 2-dimensional world-sheet field theories. These properties, known as the Kähler package (T. Hubsch, 1992), should hold for singular and smooth target spaces. Paul Green and Tristan Hubsch (P. Green & T. Hubsch, 1988) determined that the manner in which you move between singular CY target spaces require moving through either a small resolution or deformation of the singularity (T. Hubsch, 1992) and called it the 'conifold transition'. Tristan Hubsch (T. Hubsch, 1997) conjectured what this
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be view ...
theory should be for singular target spaces. Tristan Hubsch and Abdul Rahman (T. Hubsch and A. Rahman, 2005) worked to solve the Hubsch conjecture by analyzing the non-transversal case of Witten's gauged linear sigma model (E. Witten, 1993) which induces a
stratification Stratification may refer to: Mathematics * Stratification (mathematics), any consistent assignment of numbers to predicate symbols * Data stratification in statistics Earth sciences * Stable and unstable stratification * Stratification, or st ...
of these
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
(termed the ground state variety) in the case of isolated conical singularities. Under certain conditions it was determined that this ground state variety was a
conifold In mathematics and string theory, a conifold is a generalization of a manifold. Unlike manifolds, conifolds can contain conical singularities, i.e. points whose neighbourhoods look like cones over a certain base. In physics, in particular in fl ...
(P. Green & T.Hubsch, 1988; T. Hubsch, 1992) with isolated conic singularities over a certain base with a 1-dimensional exocurve (termed exo-strata) attached at each
singular Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular homology * SINGULAR, an open source Computer Algebra System (CAS) * Singular or sounder, a group of boar ...
point. T. Hubsch and A. Rahman determined the (co)-homology of this ground state variety in all dimensions, found it compatible with
Mirror symmetry In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D ther ...
and
String Theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
but found an obstruction in the middle dimension (T. Hubsch and A. Rahman, 2005). This obstruction required revisiting Hubsch's conjecture of a Stringy Singular Cohomology (T. Hubsch, 1997). In the winter of 2002, T. Hubsch and A. Rahman met with R.M. Goresky to discuss this obstruction and in discussions between R.M. Goresky and R. MacPherson, R. MacPherson made the observation that there was such a perverse sheaf that could have the cohomology that satisfied Hubsch's conjecture and resolved the obstruction. R.M. Goresky and T. Hubsch advised A. Rahman's Ph.D. dissertation on the construction of a self-dual perverse sheaf (A. Rahman, 2009) using the zig-zag construction of MacPherson- Vilonen (R. MacPherson & K. Vilonen, 1986). This perverse sheaf proved the Hübsch conjecture for isolated conic singularities, satisfied Poincarè duality, and aligned with some of the properties of the Kähler package. Satisfaction of all of the Kähler package by this Perverse sheaf for higher
codimension In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals ...
strata In geology and related fields, a stratum ( : strata) is a layer of rock or sediment characterized by certain lithologic properties or attributes that distinguish it from adjacent layers from which it is separated by visible surfaces known as e ...
is still an open problem. Markus Banagl (M. Banagl, 2010; M. Banagl, et al., 2014) addressed the Hubsch conjecture through intersection spaces for higher
codimension In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals ...
strata In geology and related fields, a stratum ( : strata) is a layer of rock or sediment characterized by certain lithologic properties or attributes that distinguish it from adjacent layers from which it is separated by visible surfaces known as e ...
inspired by Hubsch's work (T. Hubsch, 1992, 1997; P. Green and T. Hubsch, 1988) and A. Rahman's original ansatz (A. Rahman, 2009) for isolated singularities.


See also

*
Mixed Hodge module In mathematics, mixed Hodge modules are the culmination of Hodge theory, mixed Hodge structures, intersection cohomology, and the decomposition theorem yielding a coherent framework for discussing variations of degenerating mixed Hodge structures ...
* Mixed perverse sheaf *
Intersection homology In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them ov ...
*
L² cohomology In mathematics, L2 cohomology is a cohomology theory for smooth non-compact manifolds ''M'' with Riemannian metric. It is defined in the same way as de Rham cohomology except that one uses square-integrable differential forms. The notion of square- ...
*
Conifold In mathematics and string theory, a conifold is a generalization of a manifold. Unlike manifolds, conifolds can contain conical singularities, i.e. points whose neighbourhoods look like cones over a certain base. In physics, in particular in fl ...
*
String Theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
*
Supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories ...


Notes


References

* * * * * * * * * * * * * * * * * * * * * * * * * {{cite journal, last1=Banagl, first1= Markus, last2= Budur, first2= Nero, last3=Maxim, first3= Laurențiu, title= Intersection spaces, perverse sheaves and type IIB string theory, journal=
Advances in Theoretical and Mathematical Physics '' Advances in Theoretical and Mathematical Physics'' ''(ATMP)'' is a peer-reviewed, mathematics journal, published by International Press. Established in 1997, the journal publishes articles on theoretical physics and mathematics. The current ...
, volume= 18 , year=2014, issue= 2, pages= 363–399, doi= 10.4310/ATMP.2014.v18.n2.a3, url= https://projecteuclid.org/euclid.atmp/1414414838, arxiv=1212.2196, mr=3273317, s2cid= 62773026


Further reading


Intersection homology and perverse sheaves
notes by Bruno Klingler. Homological algebra Morse theory