HOME

TheInfoList



OR:

A Penning trap is a device for the storage of
charged particle In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, ...
s using a homogeneous axial
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
and an inhomogeneous quadrupole electric field. This kind of trap is particularly well suited to precision measurements of properties of
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conv ...
s and stable
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a prot ...
s, like for example mass, fission yields and isomeric yield ratios. Another example are
geonium atom A Penning trap is a device for the storage of charged particles using a homogeneous axial magnetic field and an inhomogeneous quadrupole electric field. This kind of trap is particularly well suited to precision measurements of properties of ...
s, which have been created and studied this way, to measure the electron magnetic moment. Recently these traps have been used in the physical realization of
quantum computation Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
and
quantum information processing Quantum information science is an interdisciplinary field that seeks to understand the analysis, processing, and transmission of information using quantum mechanics principles. It combines the study of Information science with quantum effects in p ...
by trapping
qubit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
s. Penning traps are used in many laboratories worldwide, including
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
, to store antimatter such as
antiproton The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The exis ...
s.


History

The Penning trap was named after F. M. Penning (1894–1953) by Hans Georg Dehmelt (1922–2017) who built the first trap. Dehmelt got inspiration from the vacuum gauge built by F. M. Penning where a current through a discharge tube in a magnetic field is proportional to the pressure. Citing from H. Dehmelt's autobiography:
"I began to focus on the magnetron/Penning discharge geometry, which, in the Penning ion gauge, had caught my interest already at Göttingen and at Duke. In their 1955
cyclotron A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Jan ...
resonance work on photoelectrons in vacuum Franken and Liebes had reported undesirable frequency shifts caused by accidental electron trapping. Their analysis made me realize that in a pure electric quadrupole field the shift would not depend on the location of the electron in the trap. This is an important advantage over many other traps that I decided to exploit. A magnetron trap of this type had been briefly discussed in J.R. Pierce's 1949 book, and I developed a simple description of the axial, magnetron, and cyclotron motions of an electron in it. With the help of the expert glassblower of the Department, Jake Jonson, I built my first high vacuum magnetron trap in 1959 and was soon able to trap electrons for about 10 sec and to detect axial, magnetron and
cyclotron resonance Cyclotron resonance describes the interaction of external forces with charged particles experiencing a magnetic field, thus already moving on a circular path. It is named after the cyclotron, a cyclic particle accelerator that utilizes an oscillati ...
s." – H. Dehmelt
H. Dehmelt shared the
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
in 1989 for the development of the ion trap technique.


Operation

Penning traps use a strong homogeneous axial
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
to confine particles radially and a quadrupole
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field f ...
to confine the particles axially. The static electric potential can be generated using a set of three
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials de ...
s: a ring and two endcaps. In an ideal Penning trap the ring and endcaps are
hyperboloid In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by defo ...
s of revolution. For trapping of positive (negative) ions, the endcap electrodes are kept at a positive (negative) potential relative to the ring. This potential produces a
saddle point In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. ...
in the centre of the trap, which traps ions along the axial direction. The electric field causes ions to oscillate (harmonically in the case of an ideal Penning trap) along the trap axis. The magnetic field in combination with the electric field causes charged particles to move in the radial plane with a motion which traces out an
epitrochoid In geometry, an epitrochoid ( or ) is a roulette traced by a point attached to a circle of radius rolling around the outside of a fixed circle of radius , where the point is at a distance from the center of the exterior circle. The parametric ...
. The orbital motion of ions in the radial plane is composed of two
modes Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
at frequencies which are called the ''magnetron'' \omega_-and the ''modified cyclotron'' \omega_+ frequencies. These motions are similar to the
deferent and epicycle In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle (, meaning "circle moving on another circle") was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Su ...
, respectively, of the Ptolemaic model of the solar system. The sum of these two frequencies is the ''cyclotron'' frequency, which depends only on the ratio of
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respectiv ...
to
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementa ...
and on the strength of the
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. This frequency can be measured very accurately and can be used to measure the masses of charged particles. Many of the highest-precision mass measurements (masses of the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kno ...
,
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
, 2 H, 20 Ne and 28 Si) come from Penning traps.
Buffer gas A buffer gas is an inert or nonflammable gas. In the Earth's atmosphere, nitrogen acts as a buffer gas. A buffer gas adds pressure to a system and controls the speed of combustion with any oxygen present. Any inert gas such as helium, neon, or ar ...
cooling, resistive cooling, and
laser cooling Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) a ...
are techniques to remove energy from ions in a Penning trap. Buffer gas cooling relies on collisions between the ions and neutral gas molecules that bring the ion energy closer to the energy of the gas molecules. In resistive cooling, moving image charges in the electrodes are made to do work through an external resistor, effectively removing energy from the ions.
Laser cooling Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) a ...
can be used to remove energy from some kinds of ions in Penning traps. This technique requires ions with an appropriate
electronic structure In quantum chemistry, electronic structure is the state of motion of electrons in an electrostatic field created by stationary nuclei. The term encompasses both the wave functions of the electrons and the energies associated with them. Electro ...
. Radiative cooling is the process by which the ions lose energy by creating
electromagnetic waves In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ligh ...
by virtue of their acceleration in the magnetic field. This process dominates the cooling of electrons in Penning traps, but is very small and usually negligible for heavier particles. Using the Penning trap can have advantages over the radio frequency trap ( Paul trap). Firstly, in the Penning trap only static fields are applied and therefore there is no micro-motion and resultant heating of the ions due to the dynamic fields, even for extended 2- and 3-dimensional ion Coulomb crystals. Also, the Penning trap can be made larger whilst maintaining strong trapping. The trapped ion can then be held further away from the electrode surfaces. Interaction with patch potentials on the electrode surfaces can be responsible for heating and
decoherence Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave ...
effects and these effects scale as a high power of the inverse distance between the ion and the electrode.


Fourier-transform mass spectrometry

Fourier-transform ion cyclotron resonance
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
(also known as Fourier-transform mass spectrometry) is a type of
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
used for determining the
mass-to-charge ratio The mass-to-charge ratio (''m''/''Q'') is a physical quantity relating the ''mass'' (quantity of matter) and the ''electric charge'' of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrody ...
(m/z) of
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
based on the cyclotron frequency of the ions in a fixed magnetic field. The ions are trapped in a Penning trap where they are excited to a larger cyclotron radius by an oscillating electric field perpendicular to the magnetic field. The excitation also results in the ions moving in phase (in a packet). The signal is detected as an image current on a pair of plates which the packet of ions passes close to as they cyclotron. The resulting signal is called a free induction decay (fid), transient or interferogram that consists of a superposition of
sine wave A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in ...
s. The useful signal is extracted from this data by performing a
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
to give a
mass spectrum A mass spectrum is a histogram plot of intensity vs. ''mass-to-charge ratio'' (''m/z'') in a chemical sample, usually acquired using an instrument called a ''mass spectrometer''. Not all mass spectra of a given substance are the same; for example ...
. Single ions can be investigated in a Penning trap held at a temperature of 4 K. For this the ring electrode is segmented and opposite electrodes are connected to a superconducting coil and the source and the gate of a
field-effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs control ...
. The coil and the parasitic capacitances of the circuit form a
LC circuit An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can ac ...
with a Q of about 50 000. The LC circuit is excited by an external electric pulse. The segmented electrodes couple the motion of the single electron to the LC circuit. Thus the energy in the LC circuit in resonance with the ion slowly oscillates between the many electrons (10000) in the gate of the field effect transistor and the single electron. This can be detected in the signal at the drain of the field effect transistor.


Geonium atom

A geonium atom, so named because it is bound to the earth, is a pseudo-atomic system created in a Penning trap, useful for measuring fundamental parameters of particles. In the simplest case, the trapped system consists of only one particle or
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conv ...
. Such a
quantum system Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qu ...
is determined by quantum states of one
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
, like in the
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen consti ...
. Hydrogen consists of two particles, the nucleus and electron, but the electron motion relative to the nucleus is equivalent to one particle in an external field, see
center-of-mass frame In physics, the center-of-momentum frame (also zero-momentum frame or COM frame) of a system is the unique (up to velocity but not origin) inertial frame in which the total momentum of the system vanishes. The ''center of momentum'' of a system is ...
. The properties of geonium are different from a typical atom. The charge undergoes cyclotron motion around the trap axis and oscillates along the axis. An inhomogeneous magnetic "bottle field" is applied to measure the quantum properties by the "continuous Stern-Gerlach" technique.
Energy level A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The t ...
s and g-factor of the particle can be measured with high precision. Van Dyck, Jr et al. explored the magnetic splitting of geonium spectra in 1978 and in 1987 published high-precision measurements of electron and positron g-factors, which constrained the electron radius.


Single particle

In November 2017, an international team of scientists isolated a single
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
in a Penning trap in order to measure its
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets ...
to the highest precision to date. It was found to be . The CODATA 2018 value matches this.


In science fiction

Due to their ability to trap charged particles purely with electromagnetic forces, Penning traps are used in Science Fiction as a method to store large quantities of antimatter. Doing so in reality would require a vacuum of significantly higher quality than currently achievable.


References


External links


Nobel Prize in Physics 1989

The High-precision Penning Trap Mass Spectrometer SMILETRAP in Stockholm, Sweden

High-precision mass determination of unstable nuclei with a Penning trap mass spectrometer at ISOLDE/CERN, Switzerland

High-precision mass measurements of rare isotopes using the LEBIT and SIPT Penning traps at the National Superconducting Cyclotron Laboratory, USA

High-precision mass measurements of short-lived isotopes using the TITAN Penning trap at TRIUMF in Vancouver, Canada
{{Mass spectrometry Measuring instruments Atomic physics Mass spectrometry Particle traps