HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a parallelohedron is a
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all o ...
that can be
translated Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
without rotations in 3-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
to fill space with a
honeycomb A honeycomb is a mass of hexagonal prismatic wax cells built by honey bees in their nests to contain their larvae and stores of honey and pollen. Beekeepers may remove the entire honeycomb to harvest honey. Honey bees consume about of honey ...
in which all copies of the polyhedron meet face-to-face. There are five types of parallelohedron, first identified by Evgraf Fedorov in 1885 in his studies of crystallographic systems: the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
, hexagonal prism,
rhombic dodecahedron In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron. Properties The rhombic dodecahed ...
,
elongated dodecahedron In geometry, the elongated dodecahedron, extended rhombic dodecahedron, rhombo-hexagonal dodecahedron or hexarhombic dodecahedron is a convex dodecahedron with 8 rhombic and 4 hexagonal faces. The hexagons can be made equilateral, or regular de ...
, and
truncated octahedron In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagons and 6 squares), 36 ...
.


Classification

Every parallelohedron is a
zonohedron In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric (a zonogon). Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments i ...
, constructed as the Minkowski sum of between three and six line segments. Each of these line segments can have any positive real number as its length, and each edge of a parallelohedron is parallel to one of these generating segments, with the same length. If the length of a segments of a parallelohedron generated from four or more segments is reduced to zero, the result is that the polyhedron
degenerates Degenerates is a musical group which originated in Grosse Pointe Park, Michigan in 1979, during the formative years of the Detroit hardcore scene. The group predated the Process of Elimination EP, which some reviewers view as the beginning of the ...
to a simpler form, a parallelohedron formed from one fewer segment. As a zonohedron, these shapes automatically have 2 Ci
central inversion In geometry, a point reflection (point inversion, central inversion, or inversion through a point) is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess point symmetry; if it is inv ...
symmetry, but additional symmetries are possible with an appropriate choice of the generating segments. The five types of parallelohedron are: *A
parallelepiped In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term '' rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. In Euclid ...
, generated from three line segments that are not all parallel to a common plane. Its most symmetric form is the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
, generated by three perpendicular unit-length line segments. *A hexagonal prism, generated from four line segments, three of them parallel to a common plane and the fourth not. Its most symmetric form is the right prism over a regular hexagon. *The
rhombic dodecahedron In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron. Properties The rhombic dodecahed ...
, generated from four line segments, no two of which are parallel to a common plane. Its most symmetric form is generated by the four long diagonals of a cube. *The
elongated dodecahedron In geometry, the elongated dodecahedron, extended rhombic dodecahedron, rhombo-hexagonal dodecahedron or hexarhombic dodecahedron is a convex dodecahedron with 8 rhombic and 4 hexagonal faces. The hexagons can be made equilateral, or regular de ...
, generated from five line segments, one of which is parallel to a common plane with two disjoint pairs of the other four. It can be generated by using an edge of the cube and its four long diagonals as generators. *The
truncated octahedron In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagons and 6 squares), 36 ...
, generated from six line segments with four sets of three coplanar segments. It can be embedded in four-dimensional space as the 4- permutahedron, whose vertices are all permutations of the counting numbers (1,2,3,4). In three-dimensional space, its most symmetric form is generated from six line segments parallel to the face diagonals of a cube. Any zonohedron whose faces have the same combinatorial structure as one of these five shapes is a parallelohedron, regardless of its particular angles or edge lengths. For example, any
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generall ...
of a parallelohedron will produce another parallelohedron of the same type.


Symmetries

When further subdivided according to their symmetry groups, there are 22 forms of the parallelohedra. For each form, the centers of its copies in its honeycomb form the points of one of the 14
Bravais lattice In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by : \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n ...
s. Because there are fewer Bravais lattices than symmetric forms of parallelohedra, certain pairs of parallelohedra map to the same Bravais lattice. By placing one endpoint of each generating line segment of a parallelohedron at the origin of three-dimensional space, the generators may be represented as three-dimensional vectors, the positions of their opposite endpoints. For this placement of the segments, one vertex of the parallelohedron will itself be at the origin, and the rest will be at positions given by sums of certain subsets of these vectors. A parallelohedron with g vectors can in this way be parameterized by 3g coordinates, three for each vector, but only some of these combinations are valid (because of the requirement that certain triples of segments lie in parallel planes, or equivalently that certain triples of vectors are coplanar) and different combinations may lead to parallelohedra that differ only by a rotation, scaling transformation, or more generally by an
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generall ...
. When affine transformations are factored out, the number of free parameters that describe the shape of a parallelohedron is zero for a parallelepiped (all parallelepipeds are equivalent to each other under affine transformations), two for a hexagonal prism, three for a rhombic dodecahedron, four for an elongated dodecahedron, and five for a truncated octahedron.


History

The classification of parallelohedra into five types was first made by Russian crystallographer Evgraf Fedorov, as chapter 13 of a Russian-language book first published in 1885, whose title has been translated into English as ''An Introduction to the Theory of Figures''. Some of the mathematics in this book is faulty; for instance it includes an incorrect proof of a lemma stating that every monohedral tiling of the plane is eventually periodic, which remains unsolved as the . In the case of parallelohedra, Fedorov assumed without proof that every parallelohedron is centrally symmetric, and used this assumption to prove his classification. The classification of parallelohedra was later placed on a firmer footing by
Hermann Minkowski Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number t ...
, who used his uniqueness theorem for polyhedra with given face normals and areas to prove that parallelohedra are centrally symmetric.


Related shapes

In two dimensions the analogous figure to a parallelohedron is a parallelogon, a polygon that can tile the plane edge-to-edge by translation. These are
parallelogram In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of eq ...
s and
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
s with opposite sides parallel and of equal length. In higher dimensions a parallelohedron is called a ''parallelotope''. There are 52 different four-dimensional parallelotopes, first enumerated by
Boris Delaunay Boris Nikolayevich Delaunay or Delone (russian: Бори́с Никола́евич Делоне́; 15 March 1890 – 17 July 1980) was a Soviet and Russian mathematician, mountain climber, and the father of physicist, Nikolai Borisovich Delone. ...
(with one missing parallelotope, later discovered by Mikhail Shtogrin), and 103769 types in five dimensions. Unlike the case for three dimensions, not all of them are
zonotope In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric (a zonogon). Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments i ...
s. 17 of the four-dimensional parallelotopes are zonotopes, one is the regular
24-cell In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, o ...
, and the remaining 34 of these shapes are Minkowski sums of zonotopes with the 24-cell. A d-dimensional parallelotope can have at most 2^d-2 facets, with the permutohedron achieving this maximum. A
plesiohedron In geometry, a plesiohedron is a special kind of space-filling polyhedron, defined as the Voronoi cell of a symmetric Delone set. Three-dimensional Euclidean space can be completely filled by copies of any one of these shapes, with no overlaps. Th ...
is a broader class of three-dimensional space-filling polyhedra, formed from the
Voronoi diagram In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed ...
s of periodic sets of points. As
Boris Delaunay Boris Nikolayevich Delaunay or Delone (russian: Бори́с Никола́евич Делоне́; 15 March 1890 – 17 July 1980) was a Soviet and Russian mathematician, mountain climber, and the father of physicist, Nikolai Borisovich Delone. ...
proved in 1929, every parallelohedron can be made into a plesiohedron by an affine transformation, but this remains open in higher dimensions, and in three dimensions there also exist other plesiohedra that are not parallelohedra. The tilings of space by plesiohedra have symmetries taking any cell to any other cell, but unlike for the parallelohedra, these symmetries may involve rotations, not just translations.


References


External links

* {{mathworld , title = Primary parallelohedron , urlname = PrimaryParallelohedron Space-filling polyhedra