HOME

TheInfoList



OR:

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1; obs. code: F51 and Pan-STARRS2 obs. code: F52) located at Haleakala Observatory, Hawaii, US, consists of astronomical
camera A camera is an optical instrument that can capture an image. Most cameras can capture 2D images, with some more advanced models being able to capture 3D images. At a basic level, most cameras consist of sealed boxes (the camera body), with ...
s,
telescope A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to obse ...
s and a computing facility that is surveying the sky for moving or variable objects on a continual basis, and also producing accurate
astrometry Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, the Milky Way. Hist ...
and
photometry Photometry can refer to: * Photometry (optics), the science of measurement of visible light in terms of its perceived brightness to human vision * Photometry (astronomy), the measurement of the flux or intensity of an astronomical object's electro ...
of already-detected objects. In January 2019 the second Pan-STARRS data release was announced. At 1.6 petabytes, it is the largest volume of astronomical data ever released.


Description

The Pan-STARRS Project is a collaboration between the University of Hawaii Institute for Astronomy, MIT
Lincoln Laboratory The MIT Lincoln Laboratory, located in Lexington, Massachusetts, is a United States Department of Defense federally funded research and development center chartered to apply advanced technology to problems of national security. Research and d ...
, Maui High Performance Computing Center and Science Applications International Corporation. Telescope construction was funded by the U.S. Air Force. By detecting differences from previous observations of the same areas of the sky, Pan-STARRS is discovering many new
asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
s,
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ...
s, variable stars,
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
e and other celestial objects. Its primary mission is now to detect
Near-Earth Object A near-Earth object (NEO) is any small Solar System body whose orbit brings it into proximity with Earth. By convention, a Solar System body is a NEO if its closest approach to the Sun (Apsis, perihelion) is less than 1.3 astronomical unit ...
s that threaten impact events and it is expected to create a database of all objects visible from Hawaii (three-quarters of the entire sky) down to
apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's ...
24. Construction of Pan-STARRS was funded in large part by the
United States Air Force The United States Air Force (USAF) is the air service branch of the United States Armed Forces, and is one of the eight uniformed services of the United States. Originally created on 1 August 1907, as a part of the United States Army Si ...
through their Research Labs. Additional funding to complete Pan-STARRS2 came from the
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
Near Earth Object Observation Program. Most of the funding presently used to operate the Pan-STARRS telescopes comes from the
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
Near Earth Object A near-Earth object (NEO) is any small Solar System body whose orbit brings it into proximity with Earth. By convention, a Solar System body is a NEO if its closest approach to the Sun (perihelion) is less than 1.3 astronomical units (AU). ...
Observation Program. The Pan-STARRS NEO survey searches all the sky north of
declination In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declination's angle is measured north or south of th ...
−47.5. The first Pan-STARRS telescope (PS1) is located at the summit of Haleakalā on Maui,
Hawaii Hawaii ( ; haw, Hawaii or ) is a state in the Western United States, located in the Pacific Ocean about from the U.S. mainland. It is the only U.S. state outside North America, the only state that is an archipelago, and the only stat ...
, and went online on 6 December 2008 under the administration of the University of Hawaii. PS1 began full-time science observations on 13 May 2010 and the PS1 Science Mission ran until March 2014. Operations were funded by the PS1 Science Consortium, PS1SC, a consortium including the
Max Planck Society The Max Planck Society for the Advancement of Science (german: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V.; abbreviated MPG) is a formally independent non-governmental and non-profit association of German research institutes. ...
in Germany, National Central University in Taiwan,
Edinburgh Edinburgh ( ; gd, Dùn Èideann ) is the capital city of Scotland and one of its 32 Council areas of Scotland, council areas. Historically part of the county of Midlothian (interchangeably Edinburghshire before 1921), it is located in Lothian ...
, Durham and Queen's Belfast Universities in the UK, and
Johns Hopkins Johns Hopkins (May 19, 1795 – December 24, 1873) was an American merchant, investor, and philanthropist. Born on a plantation, he left his home to start a career at the age of 17, and settled in Baltimore, Maryland where he remained for most ...
and
Harvard Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of higher le ...
Universities in the United States and the
Las Cumbres Observatory Global Telescope Las Cumbres Observatory (LCO) is a network of astronomical observatories run by a non-profit private operating foundation directed by the technologist Wayne Rosing. Its offices are in Goleta, California. The telescopes are located at both norther ...
Network. Consortium observations for the all sky (as visible from Hawaii) survey were completed in April 2014. Having completed PS1, the Pan-STARRS Project focused on building Pan-STARRS 2 (PS2), for which first light was achieved in 2013, with full science operations scheduled for 2014 and then the full array of four telescopes, sometimes called PS4. Completing the array of four telescopes is estimated at a total cost of US$100 million for the entire array. As of mid-2014, Pan-STARRS 2 was in the process of being commissioned. In the wake of substantial funding problems, no clear timeline existed for additional telescopes beyond the second. In March 2018, Pan-STARRS 2 was credited by the
Minor Planet Center The Minor Planet Center (MPC) is the official body for observing and reporting on minor planets under the auspices of the International Astronomical Union (IAU). Founded in 1947, it operates at the Smithsonian Astrophysical Observatory. Function T ...
for the discovery of the potentially hazardous Apollo asteroid , its first minor-planet discovery made at Haleakala on 13 May 2015.


Instruments

Pan-STARRS currently (2018) consists of two 1.8-m
Ritchey–Chrétien telescope A Ritchey–Chrétien telescope (RCT or simply RC) is a specialized variant of the Cassegrain telescope that has a hyperbolic primary mirror and a hyperbolic secondary mirror designed to eliminate off-axis optical errors (coma). The RCT has a ...
s located at Haleakala in
Hawaii Hawaii ( ; haw, Hawaii or ) is a state in the Western United States, located in the Pacific Ocean about from the U.S. mainland. It is the only U.S. state outside North America, the only state that is an archipelago, and the only stat ...
. The initial telescope, PS1, saw first light using a low-resolution camera in June 2006. The telescope has a 3° field of view, which is extremely large for telescopes of this size, and is equipped with what was the largest digital camera ever built, recording almost 1.4 billion pixels per image. The focal plane has 60 separately mounted close packed CCDs arranged in an 8 × 8 array. The corner positions are not populated, as the optics do not illuminate the corners. Each CCD device, called an Orthogonal Transfer Array (OTA), has 4800 × 4800 pixels, separated into 64 cells, each of 600 × 600 pixels. This gigapixel camera or 'GPC' saw first light on 22 August 2007, imaging the Andromeda Galaxy. After initial technical difficulties that were later mostly solved, PS1 began full operation on 13 May 2010. Nick Kaiser, principal investigator of the Pan-STARRS project, summed it up, saying, "PS1 has been taking science-quality data for six months, but now we are doing it dusk-to-dawn every night." The PS1 images, however, remain slightly less sharp than initially planned, which significantly affects some scientific uses of the data. Each image requires about 2 gigabytes of storage and exposure times will be 30 to 60 seconds (enough to record objects down to
apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's ...
22), with an additional minute or so used for computer processing. Since images are taken on a continuous basis, about 10 terabytes of data are acquired by PS1 every night. Comparing against a database of known unvarying objects compiled from earlier observations will yield objects of interest: anything that has changed brightness and/or position for any reason. As of June 30, 2010, University of Hawaii in Honolulu received an $8.4 million contract modification under the PanSTARRS multi-year program to develop and deploy a telescope data management system for the project. The very large field of view of the telescopes and the relatively short exposure times enable approximately 6000 square degrees of sky to be imaged every night. The entire sky is 4π steradians, or 4π × (180/π)2 ≈ 41,253.0 square degrees, of which about 30,000 square degrees are visible from Hawaii, which means that the entire sky can be imaged in a period of 40 hours (or about 10 hours per night on four days). Given the need to avoid times when the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
is bright, this means that an area equivalent to the entire sky will be surveyed four times a month, which is entirely unprecedented. By the end of its initial three-year mission in April 2014, PS1 had imaged the sky 12 times in each of 5 filters ('g', 'r', 'i', 'z', and 'y'). Filters 'g', 'r', and 'i' have the bandpasses of the Sloan Digital Sky Survey (SDSS) filters. (Midpoints and bandwidths at half maximum are 464 nm and 128 nm, 658 nm and 138 nm, and 806 nm and 149 nm, respectively.) The'z' filter has the SDSS midpoint (900 nm), but its longwave cutoff avoids water absorptions bands beginning at 930 nm. The shortwave cutoff of the 'y' filter is set by the water absorption bands that end around 960 nm. The longwave cutoff band is currently at 1030 nm to avoid the worst of the detector sensitivity to temperature variations.


Science

Pan-STARRS is currently mostly funded by a grant from the NASA
Near Earth Object A near-Earth object (NEO) is any small Solar System body whose orbit brings it into proximity with Earth. By convention, a Solar System body is a NEO if its closest approach to the Sun (perihelion) is less than 1.3 astronomical units (AU). ...
Observations program. It therefore spends 90% of its observing time in dedicated searches for Near Earth Objects. Systematically surveying the entire sky on a continuous basis is an unprecedented project and is expected to produce a dramatically larger number of discoveries of various types of celestial objects. For instance, the current leading asteroid discovery survey, the Mount Lemmon Survey, reaches an
apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's ...
of 22 V. Pan-STARRS will go about one magnitude fainter and cover the entire sky visible from Hawaii. The ongoing survey will also complement the efforts to map the infrared sky by the NASA WISE orbital telescope, with the results of one survey complementing and extending the other. The second data release, Pan-STARRS DR2, announced in January 2019, is the largest volume of astronomical data ever released. At over 1.6 petabytes of images, it is equivalent to 30,000 times the text content of Wikipedia. The data reside in the
Mikulski Archive for Space Telescopes The Mikulski Archive for Space Telescopes (MAST) is an astronomical data archive. The archive brings together data from the visible, ultraviolet, and near-infrared wavelength regimes. The NASA funded project is located at the Space Telescope Scie ...
(MAST).


Military limitations (until end 2011)

According to Defense Industry Daily, significant limitations were put on the PS1 survey to avoid recording sensitive objects. Streak detection software (known as "Magic") was used to censor pixels containing information about satellites in the image. Early versions of this software were immature, leaving a fill factor of 68% of the full field of view (which figure includes gaps between the detectors), but by March 2010 this had improved to 76%, a small reduction from the approximately 80% available. At the end of 2011, the USAF completely eliminated the masking requirement (for all images, past and future). Thus, with the exception of a few non-functioning OTA cells, the entire field of view can be used.


Solar System

In addition to the large number of expected discoveries in the asteroid belt, Pan-STARRS is expected to detect at least 100,000 Jupiter trojans (compared to 2900 known as of end-2008); at least 20,000 Kuiper belt objects (compared to 800 known as of mid-2005); thousands of trojan asteroids of Saturn, Uranus, and Neptune (currently eight Neptune trojans are known, none for Saturn, and one for Uranus); and large numbers of
centaur A centaur ( ; grc, κένταυρος, kéntauros; ), or occasionally hippocentaur, is a creature from Greek mythology with the upper body of a human and the lower body and legs of a horse. Centaurs are thought of in many Greek myths as bein ...
s and
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ...
s. Apart from dramatically adding to the number of known Solar System objects, Pan-STARRS will remove or mitigate the observational bias inherent in many current surveys. For instance, among currently known objects there is a bias favoring low orbital
inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Ea ...
, and thus an object such as escaped detection until recently despite its bright apparent magnitude of 17, which is not much fainter than
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the S ...
. Also, among currently known comets, there is a bias favoring those with short perihelion distances. Reducing the effects of this observational bias will enable a more complete picture of Solar System dynamics. For instance, it is expected that the number of Jupiter trojans larger than 1 km may in fact roughly match the number of asteroid-belt objects, although the currently known population of the latter is several orders of magnitude larger. Pan-STARRS data will elegantly complement the WISE (infrared) survey. WISE infrared images will permit an estimate of size for asteroids and trojan objects tracked over longer periods of time by Pan-STARRS. In 2017, Pan-STARRS detected the first known interstellar object, 1I/2017 U1 'Oumuamua, passing through the Solar System. During the formation of a planetary system, it is thought that a very large number of objects are ejected due to gravitational interactions with planets (as many as 1013 such objects in the case of the Solar System). Objects ejected from planetary systems of other stars might plausibly be throughout the Milky Way and some may pass through the Solar System. Pan-STARRS may detect collisions involving small asteroids. These are quite rare and none have yet been observed, but with a dramatic increase in the number of asteroids discovered it is expected from statistical considerations that some collision events may be observed. In November 2019, a review of images from Pan-STARRS revealed that the telescope had captured the disintegration of asteroid P/2016 G1. The asteroid was struck by a smaller object, and gradually fell apart. Astronomers speculate that the object that struck the asteroid may have massed only , traveling at .


Beyond the Solar System

It is expected that Pan-STARRS will discover an extremely large number of variable stars, including such stars in other nearby galaxies; this may lead to the discovery of previously unknown dwarf galaxies. In discovering numerous Cepheid variables and
eclipsing binary A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in ...
stars, it will help determine distances to nearby galaxies with greater precision. It is expected to discover many Type Ia
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
e in other galaxies, which are important in studying the effects of
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
, and also optical afterglows of gamma ray bursts. Because very young stars (such as T Tauri stars) are usually variable, Pan-STARRS should discover many of these and improve our understanding of them. It is also expected that Pan-STARRS may discover many extrasolar planets by observing their transits across their parent stars, as well as gravitational microlensing events. Pan-STARRS will also measure proper motion and
parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby object ...
and should thereby discover many
brown dwarf Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
s, white dwarfs, and other nearby faint objects, and it should be able to conduct a complete census of all stars within 100 parsecs of the Sun. Prior proper motion and parallax surveys often did not detect faint objects such as the recently discovered Teegarden's star, which are too faint for projects such as Hipparcos. Also, by identifying stars with large parallax but very small proper motion for follow-up radial velocity measurements, Pan-STARRS may even be able to permit the detection of hypothetical Nemesis-type objects if these actually exist.


Selected discoveries


See also

* C/2014 G3 *
Vera C. Rubin Observatory The Vera C. Rubin Observatory, previously referred to as the Large Synoptic Survey Telescope (LSST), is an astronomical observatory currently under construction in Chile. Its main task will be carrying out a synoptic astronomical survey, the L ...
* List of near-Earth object observation projects * Zwicky Transient Facility


Notes


References


External links


PS1 Science Consortium web site

The Pan-STARRS1 data archive home page

Project Pan-STARRS and the Outer Solar System

New telescope will hunt dangerous asteroids. NS 2006






{{Portal bar, Astronomy, Stars, Spaceflight, Outer space, Solar System Optical telescopes Astronomical surveys * Near-Earth object tracking