Pythagorean Prime
   HOME

TheInfoList



OR:

A Pythagorean prime is a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
of the Pythagorean primes are exactly the odd prime numbers that are the sum of two squares; this characterization is
Fermat's theorem on sums of two squares In additive number theory, Pierre de Fermat, Fermat's theorem on sums of two squares states that an Even and odd numbers, odd prime number, prime ''p'' can be expressed as: :p = x^2 + y^2, with ''x'' and ''y'' integers, if and only if :p \equiv ...
. Equivalently, by the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
, they are the odd prime numbers p for which \sqrt p is the length of the
hypotenuse In geometry, a hypotenuse is the side of a right triangle opposite to the right angle. It is the longest side of any such triangle; the two other shorter sides of such a triangle are called '' catheti'' or ''legs''. Every rectangle can be divided ...
of a
right triangle A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle ( turn or 90 degrees). The side opposite to the right angle i ...
with integer legs, and they are also the prime numbers p for which p itself is the hypotenuse of a primitive Pythagorean triangle. For instance, the number 5 is a Pythagorean prime; \sqrt5 is the hypotenuse of a right triangle with legs 1 and 2, and 5 itself is the hypotenuse of a right triangle with legs 3 and 4.


Values and density

The first few Pythagorean primes are By Dirichlet's theorem on arithmetic progressions, this sequence is infinite. More strongly, for each n, the numbers of Pythagorean and non-Pythagorean primes up to n are approximately equal. However, the number of Pythagorean primes up to n is frequently somewhat smaller than the number of non-Pythagorean primes; this phenomenon is known as For example, the only values of n up to 600000 for which there are more Pythagorean than non-Pythagorean odd primes less than or equal to n are 26861


Representation as a sum of two squares

The sum of one odd square and one even square is congruent to 1 mod 4, but there exist
composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime numb ...
s such as 21 that are and yet cannot be represented as sums of two squares.
Fermat's theorem on sums of two squares In additive number theory, Pierre de Fermat, Fermat's theorem on sums of two squares states that an Even and odd numbers, odd prime number, prime ''p'' can be expressed as: :p = x^2 + y^2, with ''x'' and ''y'' integers, if and only if :p \equiv ...
states that the
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s that can be represented as sums of two squares are exactly 2 and the odd primes congruent to The representation of each such number is unique, up to the ordering of the two squares. By using the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
, this representation can be interpreted geometrically: the Pythagorean primes are exactly the odd prime numbers p such that there exists a
right triangle A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle ( turn or 90 degrees). The side opposite to the right angle i ...
, with integer legs, whose
hypotenuse In geometry, a hypotenuse is the side of a right triangle opposite to the right angle. It is the longest side of any such triangle; the two other shorter sides of such a triangle are called '' catheti'' or ''legs''. Every rectangle can be divided ...
has They are also exactly the prime numbers p such that there exists a right triangle with integer sides whose hypotenuse has For, if the triangle with legs x and y has hypotenuse length \sqrt p (with x>y), then the triangle with legs x^2-y^2 and 2xy has hypotenuse Another way to understand this representation as a sum of two squares involves
Gaussian integer In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf ...
s, the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s whose real part and imaginary part are both The norm of a Gaussian integer x+iy is the Thus, the Pythagorean primes (and 2) occur as norms of Gaussian integers, while other primes do not. Within the Gaussian integers, the Pythagorean primes are not considered to be prime numbers, because they can be factored as p=(x+iy)(x-iy). Similarly, their squares can be factored in a different way than their
integer factorization In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a comp ...
, as \begin p^2&=(x+iy)^2(x-iy)^2\\ &=(x^2-y^2+2ixy)(x^2-y^2-2ixy).\\ \end The real and imaginary parts of the factors in these factorizations are the leg lengths of the right triangles having the given hypotenuses.


Quadratic residues

The law of
quadratic reciprocity In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard st ...
says that if p and q are distinct odd primes, at least one of which is Pythagorean, then p is a
quadratic residue In number theory, an integer ''q'' is a quadratic residue modulo operation, modulo ''n'' if it is Congruence relation, congruent to a Square number, perfect square modulo ''n''; that is, if there exists an integer ''x'' such that :x^2\equiv q \pm ...
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
q is a quadratic residue by contrast, if neither p nor q is Pythagorean, then p is a quadratic residue if and only if q is not a quadratic residue In the
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
\Z/p with p a Pythagorean prime, the polynomial equation x^2=-1 has two solutions. This may be expressed by saying that -1 is a quadratic residue In contrast, this equation has no solution in the finite fields \Z/p where p is an odd prime but is not For every Pythagorean prime p, there exists a
Paley graph In mathematics, Paley graphs are undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yiel ...
with p vertices, representing the numbers with two numbers adjacent in the graph if and only if their difference is a quadratic residue. This definition produces the same adjacency relation regardless of the order in which the two numbers are subtracted to compute their difference, because of the property of Pythagorean primes that -1 is a quadratic


References


External links

* * Classes of prime numbers Eponymous numbers in mathematics Squares in number theory {{Prime number classes, state=collapsed