HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
and
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a pseudotensor is usually a quantity that transforms like a
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
under an orientation-preserving
coordinate transformation In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
(e.g. a
proper rotation In geometry, an improper rotation. (also called rotation-reflection, rotoreflection, rotary reflection,. or rotoinversion) is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicu ...
) but additionally changes sign under an orientation-reversing coordinate transformation (e.g., an
improper rotation In geometry, an improper rotation. (also called rotation-reflection, rotoreflection, rotary reflection,. or rotoinversion) is an isometry in Euclidean space that is a combination of a Rotation (geometry), rotation about an axis and a reflection ( ...
), which is a transformation that can be expressed as a proper rotation followed by reflection. This is a generalization of a ''
pseudovector In physics and mathematics, a pseudovector (or axial vector) is a quantity that transforms like a vector under continuous rigid transformations such as rotations or translations, but which does ''not'' transform like a vector under certain ' ...
''. To evaluate a tensor or pseudotensor sign, it has to be contracted with some vectors, as many as its
rank A rank is a position in a hierarchy. It can be formally recognized—for example, cardinal, chief executive officer, general, professor—or unofficial. People Formal ranks * Academic rank * Corporate title * Diplomatic rank * Hierarchy ...
is, belonging to the space where the rotation is made while keeping the tensor coordinates unaffected (differently from what one does in the case of a base change). Under improper rotation a pseudotensor and a proper tensor of the same rank will have different sign which depends on the rank being even or odd. Sometimes inversion of the axes is used as an example of an improper rotation to see the behaviour of a pseudotensor, but it works only if vector space dimensions is odd otherwise inversion is a proper rotation without an additional reflection. There is a second meaning for pseudotensor (and likewise for ''pseudovector''), restricted to
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. Tensors obey strict transformation laws, but pseudotensors in this sense are not so constrained. Consequently, the form of a pseudotensor will, in general, change as the
frame of reference In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin (mathematics), origin, orientation (geometry), orientation, and scale (geometry), scale have been specified in physical space. It ...
is altered. An equation containing pseudotensors, such as stress–energy–momentum pseudotensors, which holds in one frame will not necessarily hold in a different frame. This makes pseudotensors of limited relevance because equations in which they appear are not invariant in form. Mathematical developments in the 1980s have allowed pseudotensors to be understood as
sections Section, Sectioning, or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
of
jet bundle In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. ...
s.


Definition

Two quite different mathematical objects are called a pseudotensor in different contexts. The first context is essentially a tensor multiplied by an extra sign factor, such that the pseudotensor changes sign under reflections when a normal tensor does not. According to one definition, a pseudotensor P of the type (p, q) is a geometric object whose components in an arbitrary basis are enumerated by (p + q)indices and obey the transformation rule \hat^_ = (-1)^A A^ _\cdots A^ _ B^ _\cdots B^ _ P^_ under a change of basis.Borisenko, A. I. and Tarapov, I. E. (1968). Vector and Tensor Analysis with Applications, New York:Dover Publications, Inc., p. 124, eq. 3.34. Here \hat^_, P^_ are the components of the pseudotensor in the new and old bases, respectively, A^ _ is the transition matrix for the contravariant indices, B^ _ is the transition matrix for the covariant indices, and (-1)^A = \mathrm\left(\det\left(A^ _\right)\right) = \pm. This transformation rule differs from the rule for an ordinary tensor only by the presence of the factor (-1)^A. The second context where the word "pseudotensor" is used is
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. In that theory, one cannot describe the energy and momentum of the gravitational field by an energy–momentum tensor. Instead, one introduces objects that behave as tensors only with respect to restricted coordinate transformations. Strictly speaking, such objects are not tensors at all. A famous example of such a pseudotensor is the Landau–Lifshitz pseudotensor.


Examples

On non-orientable manifolds, one cannot define a
volume form In mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold M of dimension n, a volume form is an n-form. It is an element of the space of sections of t ...
globally due to the non-orientability, but one can define a
volume element In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form \ma ...
, which is formally a
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
, and may also be called a ''pseudo-volume form'', due to the additional sign twist (tensoring with the sign bundle). The volume element is a pseudotensor density according to the first definition. A change of variables in multi-dimensional integration may be achieved through the incorporation of a factor of the absolute value of the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of the
Jacobian matrix In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. If this matrix is square, that is, if the number of variables equals the number of component ...
. The use of the absolute value introduces a sign change for improper coordinate transformations to compensate for the convention of keeping integration (volume) element positive; as such, an
integrand In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus,Inte ...
is an example of a pseudotensor density according to the first definition. The
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surface (topology), surfaces or other manifolds endowed with a metri ...
of an
affine connection In differential geometry, an affine connection is a geometric object on a smooth manifold which ''connects'' nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values i ...
on a manifold can be thought of as the correction terms to the partial derivatives of a coordinate expression of a vector field with respect to the coordinates to render it the vector field's covariant derivative. While the affine connection itself doesn't depend on the choice of coordinates, its Christoffel symbols do, making them a pseudotensor quantity according to the second definition.


See also

* * * * * * * * *


References


External links


Mathworld description for pseudotensor
{{Tensors Differential geometry Tensors Tensors in general relativity