argument
An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialect ...
logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premis ...
ally guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as
axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
s, along with the accepted rules of inference. Proofs are examples of exhaustive
deductive reasoning
Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. if it is impossible for the premises to be true and the conclusion to be false ...
which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a
conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1 ...
, or a hypothesis if frequently used as an assumption for further mathematical work.
Proofs employ
logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premis ...
expressed in mathematical symbols, along with
natural language
In neuropsychology, linguistics, and philosophy of language, a natural language or ordinary language is any language that has evolved naturally in humans through use and repetition without conscious planning or premeditation. Natural languag ...
which usually admits some ambiguity. In most mathematical literature, proofs are written in terms of rigorous
informal logic
Informal logic encompasses the principles of logic and logical thought outside of a formal setting (characterized by the usage of particular statements). However, the precise definition of "informal logic" is a matter of some dispute. Ralph H. J ...
The word "proof" comes from the Latin ''probare'' (to test). Related modern words are English "probe", "probation", and "probability", Spanish ''probar'' (to smell or taste, or sometimes touch or test), Italian ''provare'' (to try), and German ''probieren'' (to try). The legal term "probity" means authority or credibility, the power of testimony to prove facts when given by persons of reputation or status.
Plausibility arguments using heuristic devices such as pictures and analogies preceded strict mathematical proof. It is likely that the idea of demonstrating a conclusion first arose in connection with
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, which originated in practical problems of land measurement. The development of mathematical proof is primarily the product of ancient Greek mathematics, and one of its greatest achievements.
Thales
Thales of Miletus ( ; grc-gre, Θαλῆς; ) was a Greek mathematician, astronomer, statesman, and pre-Socratic philosopher from Miletus in Ionia, Asia Minor. He was one of the Seven Sages of Greece. Many, most notably Aristotle, regard ...
(624–546 BCE) and Hippocrates of Chios (c. 470–410 BCE) gave some of the first known proofs of theorems in geometry. Eudoxus (408–355 BCE) and
Theaetetus Theaetetus (Θεαίτητος) is a Greek name which could refer to:
* Theaetetus (mathematician) (c. 417 BC – 369 BC), Greek geometer
* ''Theaetetus'' (dialogue), a dialogue by Plato, named after the geometer
* Theaetetus (crater), a lunar imp ...
(417–369 BCE) formulated theorems but did not prove them.
Aristotle
Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical Greece, Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatet ...
(384–322 BCE) said definitions should describe the concept being defined in terms of other concepts already known.
Mathematical proof was revolutionized by
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
(300 BCE), who introduced the axiomatic method still in use today. It starts with
undefined term
In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an a ...
s and
axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
s, propositions concerning the undefined terms which are assumed to be self-evidently true (from Greek "axios", something worthy). From this basis, the method proves theorems using deductive logic. Euclid's book, the ''Elements'', was read by anyone who was considered educated in the West until the middle of the 20th century. In addition to theorems of geometry, such as the Pythagorean theorem, the ''Elements'' also covers
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
s.
Further advances also took place in medieval Islamic mathematics. While earlier Greek proofs were largely geometric demonstrations, the development of arithmetic and
algebra
Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
by Islamic mathematicians allowed more general proofs with no dependence on geometric intuition. In the 10th century CE, the Iraqi mathematician
Pascal's triangle
In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, althoug ...
As practiced, a proof is expressed in natural language and is a rigorous
argument
An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialect ...
intended to convince the audience of the truth of a statement. The standard of rigor is not absolute and has varied throughout history. A proof can be presented differently depending on the intended audience. In order to gain acceptance, a proof has to meet communal standards of rigor; an argument considered vague or incomplete may be rejected.
The concept of proof is formalized in the field of
mathematical logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal ...
formal language
In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules.
The alphabet of a formal language consists of s ...
instead of natural language. A formal proof is a sequence of formulas in a formal language, starting with an assumption, and with each subsequent formula a logical consequence of the preceding ones. This definition makes the concept of proof amenable to study. Indeed, the field of proof theory studies formal proofs and their properties, the most famous and surprising being that almost all axiomatic systems can generate certain undecidable statements not provable within the system.
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice. A classic question in philosophy asks whether mathematical proofs are analytic or
synthetic Synthetic things are composed of multiple parts, often with the implication that they are artificial. In particular, 'synthetic' may refer to:
Science
* Synthetic chemical or compound, produced by the process of chemical synthesis
* Synthetic o ...
Quine
Quine may refer to:
* Quine (surname), people with the surname ''Quine''
* Willard Van Orman Quine, the philosopher, or things named after him:
** Quine (computing), a program that produces its source code as output
** Quine–McCluskey algorithm, ...
argued in his 1951 " Two Dogmas of Empiricism" that such a distinction is untenable.
Proofs may be admired for their mathematical beauty. The mathematician Paul Erdős was known for describing proofs which he found to be particularly elegant as coming from "The Book", a hypothetical tome containing the most beautiful method(s) of proving each theorem. The book ''
Proofs from THE BOOK
''Proofs from THE BOOK'' is a book of mathematical proofs by Martin Aigner and Günter M. Ziegler. The book is dedicated to the mathematician Paul Erdős, who often referred to "The Book" in which God keeps the most elegant proof of each mat ...
'', published in 2003, is devoted to presenting 32 proofs its editors find particularly pleasing.
Methods of proof
Direct proof
In direct proof, the conclusion is established by logically combining the axioms, definitions, and earlier theorems. For example, direct proof can be used to prove that the sum of two even
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s is always even:
:Consider two even integers ''x'' and ''y''. Since they are even, they can be written as ''x'' = 2''a'' and ''y'' = 2''b'', respectively, for some integers ''a'' and ''b''. Then the sum is ''x'' + ''y'' = 2''a'' + 2''b'' = 2(''a''+''b''). Therefore ''x''+''y'' has 2 as a factor and, by definition, is even. Hence, the sum of any two even integers is even.
This proof uses the definition of even integers, the integer properties of closure under addition and multiplication, and the distributive property.
Proof by mathematical induction
Despite its name, mathematical induction is a method of deduction, not a form of inductive reasoning. In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. This avoids having to prove each case individually. A variant of mathematical induction is proof by infinite descent, which can be used, for example, to prove the irrationality of the square root of two.
A common application of proof by mathematical induction is to prove that a property known to hold for one number holds for all
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
s:
Let be the set of natural numbers, and let be a mathematical statement involving the natural number belonging to such that
* (i) is true, i.e., is true for .
* (ii) is true whenever is true, i.e., is true implies that is true.
* Then is true for all natural numbers .
For example, we can prove by induction that all positive integers of the form are odd. Let represent " is odd":
:(i) For , , and is odd, since it leaves a remainder of when divided by . Thus is true.
:(ii) For any , if is odd (), then must also be odd, because adding to an odd number results in an odd number. But , so is odd (). So implies .
:Thus is odd, for all positive integers .
The shorter phrase "proof by induction" is often used instead of "proof by mathematical induction".
infers
Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word ''infer'' means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in ...
the statement "if ''p'' then ''q''" by establishing the logically equivalentcontrapositive statement: "if ''not q'' then ''not p''".
For example, contraposition can be used to establish that, given an integer , if is even, then is even:
: Suppose is not even. Then is odd. The product of two odd numbers is odd, hence is odd. Thus is not even. Thus, if ''is'' even, the supposition must be false, so has to be even.
Proof by contradiction
In proof by contradiction, also known by the Latin phrase '' reductio ad absurdum'' (by reduction to the absurd), it is shown that if some statement is assumed true, a logical contradiction occurs, hence the statement must be false. A famous example involves the proof that is an irrational number:
:Suppose that were a rational number. Then it could be written in lowest terms as where ''a'' and ''b'' are non-zero integers with no common factor. Thus, . Squaring both sides yields 2''b''2 = ''a''2. Since 2 divides the expression on the left, 2 must also divide the equal expression on the right. That is, ''a''2 is even, which implies that ''a'' must also be even, as seen in the proposition above (in #Proof by contraposition). So we can write ''a'' = 2''c'', where ''c'' is also an integer. Substitution into the original equation yields 2''b''2 = (2''c'')2 = 4''c''2. Dividing both sides by 2 yields ''b''2 = 2''c''2. But then, by the same argument as before, 2 divides ''b''2, so ''b'' must be even. However, if ''a'' and ''b'' are both even, they have 2 as a common factor. This contradicts our previous statement that ''a'' and ''b'' have no common factor, so we must conclude that is an irrational number.
To paraphrase: if one could write as a
fraction
A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
, this fraction could never be written in lowest terms, since 2 could always be factored from numerator and denominator.
Proof by construction
Proof by construction, or proof by example, is the construction of a concrete example with a property to show that something having that property exists. Joseph Liouville, for instance, proved the existence of transcendental numbers by constructing an explicit example. It can also be used to construct a counterexample to disprove a proposition that all elements have a certain property.
Proof by exhaustion
In proof by exhaustion, the conclusion is established by dividing it into a finite number of cases and proving each one separately. The number of cases sometimes can become very large. For example, the first proof of the four color theorem was a proof by exhaustion with 1,936 cases. This proof was controversial because the majority of the cases were checked by a computer program, not by hand. The shortest known proof of the four color theorem still has over 600 cases.
Probabilistic proof
A probabilistic proof is one in which an example is shown to exist, with certainty, by using methods of
probability theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
. Probabilistic proof, like proof by construction, is one of many ways to prove
existence theorem
In mathematics, an existence theorem is a theorem which asserts the existence of a certain object. It might be a statement which begins with the phrase " there exist(s)", or it might be a universal statement whose last quantifier is existential ...
s.
In the probabilistic method, one seeks an object having a given property, starting with a large set of candidates. One assigns a certain probability for each candidate to be chosen, and then proves that there is a non-zero probability that a chosen candidate will have the desired property. This does not specify which candidates have the property, but the probability could not be positive without at least one.
A probabilistic proof is not to be confused with an argument that a theorem is 'probably' true, a 'plausibility argument'. The work on the Collatz conjecture shows how far plausibility is from genuine proof. While most mathematicians do not think that probabilistic evidence for the properties of a given object counts as a genuine mathematical proof, a few mathematicians and philosophers have argued that at least some types of probabilistic evidence (such as Rabin's probabilistic algorithm for testing primality) are as good as genuine mathematical proofs.
Combinatorial proof
A combinatorial proof establishes the equivalence of different expressions by showing that they count the same object in different ways. Often a bijection between two sets is used to show that the expressions for their two sizes are equal. Alternatively, a double counting argument provides two different expressions for the size of a single set, again showing that the two expressions are equal.
Nonconstructive proof
A nonconstructive proof establishes that a
mathematical object
A mathematical object is an abstract concept arising in mathematics.
In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical ...
with a certain property exists—without explaining how such an object can be found. Often, this takes the form of a proof by contradiction in which the nonexistence of the object is proved to be impossible. In contrast, a constructive proof establishes that a particular object exists by providing a method of finding it. The following famous example of a nonconstructive proof shows that there exist two irrational numbers ''a'' and ''b'' such that is a rational number. This proof uses that is irrational (an easy proof is known since
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
), but not that is irrational (this true, but the proof is not elementary).
:Either is a rational number and we are done (take ), or is irrational so we can write and . This then gives , which is thus a rational number of the form
Statistical proofs in pure mathematics
The expression "statistical proof" may be used technically or colloquially in areas of
pure mathematics
Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications ...
, such as involving
cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adve ...
,
chaotic series
Chaotic was originally a Danish trading card game. It expanded to an online game in America which then became a television program based on the game. The program was able to be seen on 4Kids TV (Fox affiliates, nationwide), Jetix, The CW4Kid ...
mathematical statistics
Mathematical statistics is the application of probability theory, a branch of mathematics, to statistics, as opposed to techniques for collecting statistical data. Specific mathematical techniques which are used for this include mathematical ...
Until the twentieth century it was assumed that any proof could, in principle, be checked by a competent mathematician to confirm its validity.The History and Concept of Mathematical Proof Steven G. Krantz. 1. February 5, 2007 However, computers are now used both to prove theorems and to carry out calculations that are too long for any human or team of humans to check; the first proof of the four color theorem is an example of a computer-assisted proof. Some mathematicians are concerned that the possibility of an error in a computer program or a run-time error in its calculations calls the validity of such computer-assisted proofs into question. In practice, the chances of an error invalidating a computer-assisted proof can be reduced by incorporating redundancy and self-checks into calculations, and by developing multiple independent approaches and programs. Errors can never be completely ruled out in case of verification of a proof by humans either, especially if the proof contains natural language and requires deep mathematical insight to uncover the potential hidden assumptions and fallacies involved.
Undecidable statements
A statement that is neither provable nor disprovable from a set of
axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
s is called undecidable (from those axioms). One example is the parallel postulate, which is neither provable nor refutable from the remaining axioms of
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
Heuristic mathematics and experimental mathematics
While early mathematicians such as
Eudoxus of Cnidus
Eudoxus of Cnidus (; grc, Εὔδοξος ὁ Κνίδιος, ''Eúdoxos ho Knídios''; ) was an ancient Greek astronomer, mathematician, scholar, and student of Archytas and Plato. All of his original works are lost, though some fragments a ...
did not use proofs, from
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
to the
foundational mathematics
Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathe ...
developments of the late 19th and 20th centuries, proofs were an essential part of mathematics. With the increase in computing power in the 1960s, significant work began to be done investigating
mathematical object
A mathematical object is an abstract concept arising in mathematics.
In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical ...
s outside of the proof-theorem framework, in experimental mathematics. Early pioneers of these methods intended the work ultimately to be embedded in a classical proof-theorem framework, e.g. the early development of fractal geometry, which was ultimately so embedded.
Related concepts
Visual proof
Although not a formal proof, a visual demonstration of a mathematical theorem is sometimes called a " proof without words". The left-hand picture below is an example of a historic visual proof of the Pythagorean theorem in the case of the (3,4,5)
triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non- colli ...
.
File:Chinese pythagoras.jpg, Visual proof for the (3,4,5) triangle as in the
Zhoubi Suanjing
The ''Zhoubi Suanjing'' () is one of the oldest Chinese mathematical texts. "Zhou" refers to the ancient Zhou dynasty (1046–256 BCE); "Bì" literally means " thigh", but in the book refers to the gnomon of a sundial. The book is dedicated to ...
500–200 BCE.
File:Pythagoras-2a.gif, Animated visual proof for the Pythagorean theorem by rearrangement.
File:Pythag anim.gif, A second animated proof of the Pythagorean theorem.
Some illusory visual proofs, such as the missing square puzzle, can be constructed in a way which appear to prove a supposed mathematical fact but only do so under the presence of tiny errors (for example, supposedly straight lines which actually bend slightly) which are unnoticeable until the entire picture is closely examined, with lengths and angles precisely measured or calculated.
Elementary proof
An elementary proof is a proof which only uses basic techniques. More specifically, the term is used in
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
to refer to proofs that make no use of complex analysis. For some time it was thought that certain theorems, like the prime number theorem, could only be proved using "higher" mathematics. However, over time, many of these results have been reproved using only elementary techniques.
Two-column proof
A particular way of organising a proof using two parallel columns is often used as a mathematical exercise in elementary geometry classes in the United States. The proof is written as a series of lines in two columns. In each line, the left-hand column contains a proposition, while the right-hand column contains a brief explanation of how the corresponding proposition in the left-hand column is either an axiom, a hypothesis, or can be logically derived from previous propositions. The left-hand column is typically headed "Statements" and the right-hand column is typically headed "Reasons".
Colloquial use of "mathematical proof"
The expression "mathematical proof" is used by lay people to refer to using mathematical methods or arguing with
mathematical object
A mathematical object is an abstract concept arising in mathematics.
In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical ...
s, such as numbers, to demonstrate something about everyday life, or when data used in an argument is numerical. It is sometimes also used to mean a "statistical proof" (below), especially when used to argue from
data
In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpret ...
probability
Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
of
data
In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpret ...
. While ''using'' mathematical proof to establish theorems in statistics, it is usually not a mathematical proof in that the ''assumptions'' from which probability statements are derived require empirical evidence from outside mathematics to verify. In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, in addition to statistical methods, "statistical proof" can refer to the specialized ''
mathematical methods of physics
Mathematical physics refers to the development of mathematical methods for application to problems in physics. The '' Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the developme ...
'' applied to analyze data in a
particle physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and ...
experiment
An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs wh ...
physical cosmology
Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of f ...
. "Statistical proof" may also refer to raw data or a convincing diagram involving data, such as scatter plots, when the data or diagram is adequately convincing without further analysis.
Inductive logic proofs and Bayesian analysis
Proofs using inductive logic, while considered mathematical in nature, seek to establish propositions with a degree of certainty, which acts in a similar manner to
probability
Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
, and may be less than full certainty. Inductive logic should not be confused with
mathematical induction
Mathematical induction is a method for proving that a statement ''P''(''n'') is true for every natural number ''n'', that is, that the infinitely many cases ''P''(0), ''P''(1), ''P''(2), ''P''(3), ... all hold. Informal metaphors help ...
information
Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level information pertains to the interpretation of that which may be sensed. Any natural process that is not completely random, ...
is acquired.
Proofs as mental objects
Psychologism views mathematical proofs as psychological or mental objects. Mathematician philosophers, such as Leibniz, Frege, and Carnap have variously criticized this view and attempted to develop a semantics for what they considered to be the language of thought, whereby standards of mathematical proof might be applied to empirical science.
Influence of mathematical proof methods outside mathematics
Philosopher-mathematicians such as Spinoza have attempted to formulate
philosophical
Philosophy (from , ) is the systematized study of general and fundamental questions, such as those about existence, reason, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. Som ...
arguments in an axiomatic manner, whereby mathematical proof standards could be applied to argumentation in general philosophy. Other mathematician-philosophers have tried to use standards of mathematical proof and reason, without empiricism, to arrive at statements outside of mathematics, but having the certainty of propositions deduced in a mathematical proof, such as Descartes' ''cogito'' argument.
Ending a proof
Sometimes, the abbreviation ''"Q.E.D."'' is written to indicate the end of a proof. This abbreviation stands for ''"quod erat demonstrandum"'', which is
Latin
Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power ...
for ''"that which was to be demonstrated"''. A more common alternative is to use a square or a rectangle, such as □ or ∎, known as a " tombstone" or "halmos" after its
eponym
An eponym is a person, a place, or a thing after whom or which someone or something is, or is believed to be, named. The adjectives which are derived from the word eponym include ''eponymous'' and ''eponymic''.
Usage of the word
The term ''epon ...
Paul Halmos. Often, "which was to be shown" is verbally stated when writing "QED", "□", or "∎" during an oral presentation. Unicode explicitly provides the "end of proof" character, U+220E (∎) (220E(hex) = 8718(dec)).
course
Course may refer to:
Directions or navigation
* Course (navigation), the path of travel
* Course (orienteering), a series of control points visited by orienteers during a competition, marked with red/white flags in the terrain, and corresponding ...
Proof
Proof most often refers to:
* Proof (truth), argument or sufficient evidence for the truth of a proposition
* Alcohol proof, a measure of an alcoholic drink's strength
Proof may also refer to:
Mathematics and formal logic
* Formal proof, a con ...
Proof
Proof most often refers to:
* Proof (truth), argument or sufficient evidence for the truth of a proposition
* Alcohol proof, a measure of an alcoholic drink's strength
Proof may also refer to:
Mathematics and formal logic
* Formal proof, a con ...