HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a root of unity is any
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
that yields 1 when raised to some positive
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
power . Roots of unity are used in many branches of mathematics, and are especially important in
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, the theory of group characters, and the
discrete Fourier transform In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discre ...
. It is occasionally called a de Moivre number after French mathematician
Abraham de Moivre Abraham de Moivre FRS (; 26 May 166727 November 1754) was a French mathematician known for de Moivre's formula, a formula that links complex numbers and trigonometry, and for his work on the normal distribution and probability theory. He move ...
. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also
algebraic integer In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s. For fields with a positive characteristic, the roots belong to a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
, and, conversely, every nonzero element of a finite field is a root of unity. Any
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra ...
contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field.


General definition

An ''th root of unity'', where is a positive integer, is a number satisfying the
equation In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
z^n = 1. Unless otherwise specified, the roots of unity may be taken to be
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s (including the number 1, and the number −1 if is even, which are complex with a zero
imaginary part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
), and in this case, the th roots of unity are \exp\left(\frac\right)=\cos\frac+i\sin\frac,\qquad k=0,1,\dots, n-1. However, the defining equation of roots of unity is meaningful over any field (and even over any ring) , and this allows considering roots of unity in . Whichever is the field , the roots of unity in are either complex numbers, if the characteristic of is 0, or, otherwise, belong to a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
. Conversely, every nonzero element in a finite field is a root of unity in that field. See Root of unity modulo ''n'' and
Finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
for further details. An th root of unity is said to be if it is not an th root of unity for some smaller , that is if :z^n=1\quad \text \quad z^m \ne 1 \text m = 1, 2, 3, \ldots, n-1. If ''n'' is a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
, then all th roots of unity, except 1, are primitive. In the above formula in terms of exponential and trigonometric functions, the primitive th roots of unity are those for which and are
coprime integers In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiva ...
. Subsequent sections of this article will comply with complex roots of unity. For the case of roots of unity in fields of nonzero characteristic, see . For the case of roots of unity in rings of modular integers, see Root of unity modulo ''n''.


Elementary properties

Every th root of unity is a primitive th root of unity for some , which is the smallest positive integer such that . Any integer power of an th root of unity is also an th root of unity, as :(z^k)^n = z^ = (z^n)^k = 1^k = 1. This is also true for negative exponents. In particular, the reciprocal of an th root of unity is its
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
, and is also an th root of unity: :\frac = z^ = z^ = \bar z. If is an th root of unity and then . Indeed, by the definition of congruence modulo ''n'', for some integer , and hence : z^a = z^ = z^b z^ = z^b (z^n)^k = z^b 1^k = z^b. Therefore, given a power of , one has , where is the remainder of the
Euclidean division In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than ...
of by . Let be a primitive th root of unity. Then the powers , , ..., , are th roots of unity and are all distinct. (If where , then , which would imply that would not be primitive.) This implies that , , ..., , are all of the th roots of unity, since an th- degree
polynomial equation In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field (mathematics), field, often the field of the rational numbers. For example, x^5-3x+1=0 is a ...
over a field (in this case the field of complex numbers) has at most solutions. From the preceding, it follows that, if is a primitive th root of unity, then z^a = z^b
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
a\equiv b \pmod. If is not primitive then a\equiv b \pmod implies z^a = z^b, but the converse may be false, as shown by the following example. If , a non-primitive th root of unity is , and one has z^2 = z^4 = 1, although 2 \not\equiv 4 \pmod. Let be a primitive th root of unity. A power of is a primitive th root of unity for : a = \frac, where \gcd(k,n) is the
greatest common divisor In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers , , the greatest co ...
of and . This results from the fact that is the smallest multiple of that is also a multiple of . In other words, is the
least common multiple In arithmetic and number theory, the least common multiple (LCM), lowest common multiple, or smallest common multiple (SCM) of two integers ''a'' and ''b'', usually denoted by , is the smallest positive integer that is divisible by both ''a'' and ...
of and . Thus :a =\frac=\frac=\frac. Thus, if and are
coprime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
, is also a primitive th root of unity, and therefore there are distinct primitive th roots of unity (where is
Euler's totient function In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In ot ...
). This implies that if is a prime number, all the roots except are primitive. In other words, if is the set of all th roots of unity and is the set of primitive ones, is a
disjoint union In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
of the : :\operatorname(n) = \bigcup_\operatorname(d), where the notation means that goes through all the positive
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
s of , including and . Since the
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
of is , and that of is , this demonstrates the classical formula :\sum_\varphi(d) = n.


Group properties


Group of all roots of unity

The product and the
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
of two roots of unity are also roots of unity. In fact, if and , then , and , where is the
least common multiple In arithmetic and number theory, the least common multiple (LCM), lowest common multiple, or smallest common multiple (SCM) of two integers ''a'' and ''b'', usually denoted by , is the smallest positive integer that is divisible by both ''a'' and ...
of and . Therefore, the roots of unity form an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
under multiplication. This group is the
torsion subgroup In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group ...
of the
circle group In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
.


Group of th roots of unity

For an integer ''n'', the product and the multiplicative inverse of two th roots of unity are also th roots of unity. Therefore, the th roots of unity form an abelian group under multiplication. Given a primitive th root of unity , the other th roots are powers of . This means that the group of the th roots of unity is a
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
. It is worth remarking that the term of ''cyclic group'' originated from the fact that this group is a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of the
circle group In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
.


Galois group of the primitive th roots of unity

Let \Q(\omega) be the
field extension In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ...
of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s generated over \Q by a primitive th root of unity . As every th root of unity is a power of , the field \Q(\omega) contains all th roots of unity, and \Q(\omega) is a
Galois extension In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ...
of \Q. If is an integer, is a primitive th root of unity if and only if and are
coprime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
. In this case, the map :\omega \mapsto \omega^k induces an
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
of \Q(\omega), which maps every th root of unity to its th power. Every automorphism of \Q(\omega) is obtained in this way, and these automorphisms form the
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
of \Q(\omega) over the field of the rationals. The rules of exponentiation imply that the
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography * Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
of two such automorphisms is obtained by multiplying the exponents. It follows that the map :k\mapsto \left(\omega \mapsto \omega^k\right) defines a
group isomorphism In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the ...
between the
units Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, histo ...
of the ring of integers modulo and the Galois group of \Q(\omega). This shows that this Galois group is abelian, and implies thus that the primitive roots of unity may be expressed in terms of radicals.


Galois group of the real part of the primitive roots of unity

The real part of the primitive roots of unity are related to one another as roots of the minimal polynomial of 2\cos(2\pi/n). The roots of the minimal polynomial are just twice the real part; these roots form a cyclic Galois group.


Trigonometric expression

De Moivre's formula, which is valid for all real and integers , is :\left(\cos x + i \sin x\right)^n = \cos nx + i \sin nx. Setting gives a primitive th root of unity – one gets :\left(\cos\frac + i \sin\frac\right)^ = \cos 2\pi + i \sin 2\pi = 1, but :\left(\cos\frac + i \sin\frac\right)^ = \cos\frac + i \sin\frac \neq 1 for . In other words, :\cos\frac + i \sin\frac is a primitive th root of unity. This formula shows that in the
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
the th roots of unity are at the vertices of a regular -sided polygon inscribed in the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
, with one vertex at 1 (see the plot for on the right). This geometric fact accounts for the term "cyclotomic" in such phrases as
cyclotomic field In algebraic number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to \Q, the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory ...
and
cyclotomic polynomial In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th prim ...
; it is from the Greek roots " cyclo" (circle) plus " tomos" (cut, divide).
Euler's formula Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for ...
:e^ = \cos x + i \sin x, which is valid for all real , can be used to put the formula for the th roots of unity into the form :e^, \quad 0 \le k < n. It follows from the discussion in the previous section that this is a primitive th-root if and only if the fraction is in lowest terms; that is, that and are coprime. An
irrational number In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
that can be expressed as the
real part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
of the root of unity; that is, as \cos(2\pi k/n), is called a trigonometric number.


Algebraic expression

The th roots of unity are, by definition, the
roots A root is the part of a plant, generally underground, that anchors the plant body, and absorbs and stores water and nutrients. Root or roots may also refer to: Art, entertainment, and media * ''The Root'' (magazine), an online magazine focusin ...
of the
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
, and are thus
algebraic number In mathematics, an algebraic number is a number that is a root of a function, root of a non-zero polynomial in one variable with integer (or, equivalently, Rational number, rational) coefficients. For example, the golden ratio (1 + \sqrt)/2 is ...
s. As this polynomial is not irreducible (except for ), the primitive th roots of unity are roots of an irreducible polynomial (over the integers) of lower degree, called the th
cyclotomic polynomial In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th prim ...
, and often denoted . The degree of is given by
Euler's totient function In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In ot ...
, which counts (among other things) the number of primitive th roots of unity. The roots of are exactly the primitive th roots of unity.
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
can be used to show that the cyclotomic polynomials may be conveniently solved in terms of radicals. (The trivial form \sqrt /math> is not convenient, because it contains non-primitive roots, such as 1, which are not roots of the cyclotomic polynomial, and because it does not give the real and imaginary parts separately.) This means that, for each positive integer , there exists an expression built from integers by root extractions, additions, subtractions, multiplications, and divisions (and nothing else), such that the primitive th roots of unity are exactly the set of values that can be obtained by choosing values for the root extractions ( possible values for a th root). (For more details see , below.) Gauss proved that a primitive th root of unity can be expressed using only
square root In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
s, addition, subtraction, multiplication and division if and only if it is possible to construct with compass and straightedge the regular -gon. This is the case
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
is either a
power of two A power of two is a number of the form where is an integer, that is, the result of exponentiation with number 2, two as the Base (exponentiation), base and integer  as the exponent. In the fast-growing hierarchy, is exactly equal to f_1^ ...
or the product of a power of two and
Fermat prime In mathematics, a Fermat number, named after Pierre de Fermat (1601–1665), the first known to have studied them, is a positive integer of the form:F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: 3, 5, ...
s that are all different. If is a primitive th root of unity, the same is true for , and r=z+\frac 1z is twice the real part of . In other words, is a reciprocal polynomial, the polynomial R_n that has as a root may be deduced from by the standard manipulation on reciprocal polynomials, and the primitive th roots of unity may be deduced from the roots of R_n by solving the
quadratic equation In mathematics, a quadratic equation () is an equation that can be rearranged in standard form as ax^2 + bx + c = 0\,, where the variable (mathematics), variable represents an unknown number, and , , and represent known numbers, where . (If and ...
z^2-rz+1=0. That is, the real part of the primitive root is \frac r2, and its imaginary part is \pm i\sqrt. The polynomial R_n is an irreducible polynomial whose roots are all real. Its degree is a power of two, if and only if is a product of a power of two by a product (possibly empty) of distinct Fermat primes, and the regular -gon is constructible with compass and straightedge. Otherwise, it is solvable in radicals, but one are in the casus irreducibilis, that is, every expression of the roots in terms of radicals involves ''nonreal radicals''.


Explicit expressions in low degrees

* For , the cyclotomic polynomial is Therefore, the only primitive first root of unity is 1, which is a non-primitive th root of unity for every ''n'' > 1. * As , the only primitive second (square) root of unity is −1, which is also a non-primitive th root of unity for every even . With the preceding case, this completes the list of real roots of unity. * As , the primitive third (
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
) roots of unity, which are the roots of this
quadratic polynomial In mathematics, a quadratic function of a single variable is a function of the form :f(x)=ax^2+bx+c,\quad a \ne 0, where is its variable, and , , and are coefficients. The expression , especially when treated as an object in itself rather tha ...
, are \frac,\ \frac . * As , the two primitive fourth roots of unity are and . * As , the four primitive fifth roots of unity are the roots of this quartic polynomial, which may be explicitly solved in terms of radicals, giving the roots \frac4 \pm i \frac, where \varepsilon may take the two values 1 and −1 (the same value in the two occurrences). * As , there are two primitive sixth roots of unity, which are the negatives (and also the square roots) of the two primitive cube roots: \frac,\ \frac. * As 7 is not a Fermat prime, the seventh roots of unity are the first that require
cube root In mathematics, a cube root of a number is a number that has the given number as its third power; that is y^3=x. The number of cube roots of a number depends on the number system that is considered. Every real number has exactly one real cub ...
s. There are 6 primitive seventh roots of unity, which are pairwise
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
. The sum of a root and its conjugate is twice its real part. These three sums are the three real roots of the cubic polynomial r^3+r^2-2r-1, and the primitive seventh roots of unity are \frac\pm i\sqrt, where runs over the roots of the above polynomial. As for every cubic polynomial, these roots may be expressed in terms of square and cube roots. However, as these three roots are all real, this is casus irreducibilis, and any such expression involves non-real cube roots. * As , the four primitive eighth roots of unity are the square roots of the primitive fourth roots, . They are thus \pm\frac \pm i\frac. * See Heptadecagon for the real part of a 17th root of unity.


Periodicity

If is a primitive th root of unity, then the sequence of powers : is -periodic (because for all values of ), and the sequences of powers : for are all -periodic (because ). Furthermore, the set of these sequences is a basis of the linear space of all -periodic sequences. This means that ''any'' -periodic sequence of complex numbers : can be expressed as a
linear combination In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
of powers of a primitive th root of unity: : x_j = \sum_k X_k \cdot z^ = X_1 z^ + \cdots + X_n \cdot z^ for some complex numbers and every integer . This is a form of
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fo ...
. If is a (discrete) time variable, then is a
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
and is a complex
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
. Choosing for the primitive th root of unity :z = e^\frac = \cos\frac + i \sin\frac allows to be expressed as a linear combination of and : :x_j = \sum_k A_k \cos \frac + \sum_k B_k \sin \frac. This is a
discrete Fourier transform In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discre ...
.


Summation

Let be the sum of all the th roots of unity, primitive or not. Then :\operatorname(n) = \begin 1, & n=1\\ 0, & n>1. \end This is an immediate consequence of
Vieta's formulas In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (1540-1603), more commonly referred to by the Latinised form of his name, "Franciscus Vieta." Basi ...
. In fact, the th roots of unity being the roots of the polynomial , their sum is the
coefficient In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
of degree , which is either 1 or 0 according whether or . Alternatively, for there is nothing to prove, and for there exists a root – since the set of all the th roots of unity is a group, , so the sum satisfies , whence . Let be the sum of all the primitive th roots of unity. Then :\operatorname(n) = \mu(n), where is the
Möbius function The Möbius function \mu(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and m ...
. In the section Elementary properties, it was shown that if is the set of all th roots of unity and is the set of primitive ones, is a disjoint union of the : :\operatorname(n) = \bigcup_\operatorname(d), This implies :\operatorname(n) = \sum_\operatorname(d). Applying the
Möbius inversion formula In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius. A large genera ...
gives :\operatorname(n) = \sum_\mu(d)\operatorname\left(\frac\right). In this formula, if , then , and for : . Therefore, . This is the special case of Ramanujan's sum , defined as the sum of the th powers of the primitive th roots of unity: :c_n(s) = \sum_^n e^.


Orthogonality

From the summation formula follows an
orthogonality In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendicular'' is more specifically ...
relationship: for and :\sum_^ \overline \cdot z^ = n \cdot\delta_ where is the
Kronecker delta In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\ ...
and is any primitive th root of unity. The
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
whose th entry is :U_ = n^\cdot z^ defines a
discrete Fourier transform In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discre ...
. Computing the inverse transformation using
Gaussian elimination In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can a ...
requires operations. However, it follows from the orthogonality that is unitary. That is, :\sum_^ \overline \cdot U_ = \delta_, and thus the inverse of is simply the complex conjugate. (This fact was first noted by
Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, Geodesy, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observat ...
when solving the problem of trigonometric interpolation.) The straightforward application of or its inverse to a given vector requires operations. The
fast Fourier transform A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in ...
algorithms reduces the number of operations further to .


Cyclotomic polynomials

The zeros of the polynomial :p(z) = z^n - 1 are precisely the th roots of unity, each with multiplicity 1. The th ''
cyclotomic polynomial In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th prim ...
'' is defined by the fact that its zeros are precisely the ''primitive'' th roots of unity, each with multiplicity 1. : \Phi_n(z) = \prod_^(z-z_k) where are the primitive th roots of unity, and is
Euler's totient function In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In ot ...
. The polynomial has integer coefficients and is an
irreducible polynomial In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted f ...
over the rational numbers (that is, it cannot be written as the product of two positive-degree polynomials with rational coefficients). The case of prime , which is easier than the general assertion, follows by applying
Eisenstein's criterion In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials wit ...
to the polynomial :\frac, and expanding via the
binomial theorem In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, the power expands into a polynomial with terms of the form , where the exponents and a ...
. Every th root of unity is a primitive th root of unity for exactly one positive
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
of . This implies that :z^n - 1 = \prod_ \Phi_d(z). This formula represents the
factorization In mathematics, factorization (or factorisation, see American and British English spelling differences#-ise, -ize (-isation, -ization), English spelling differences) or factoring consists of writing a number or another mathematical object as a p ...
of the polynomial into irreducible factors: :\begin z^1 -1 &= z-1 \\ z^2 -1 &= (z-1)(z+1) \\ z^3 -1 &= (z-1) (z^2 + z + 1) \\ z^4 -1 &= (z-1)(z+1) (z^2+1) \\ z^5 -1 &= (z-1) (z^4 + z^3 +z^2 + z + 1) \\ z^6 -1 &= (z-1)(z+1) (z^2 + z + 1) (z^2 - z + 1)\\ z^7 -1 &= (z-1) (z^6+ z^5 + z^4 + z^3 + z^2 + z + 1) \\ z^8 -1 &= (z-1)(z+1) (z^2+1) (z^4+1) \\ \end Applying Möbius inversion to the formula gives :\Phi_n(z) = \prod_\left(z^\frac - 1\right)^ = \prod_\left(z^d - 1\right)^, where is the
Möbius function The Möbius function \mu(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and m ...
. So the first few cyclotomic polynomials are : : : : : : : : If is a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
, then all the th roots of unity except 1 are primitive th roots. Therefore, \Phi_p(z) = \frac = \sum_^ z^k. Substituting any positive integer ≥ 2 for , this sum becomes a base repunit. Thus a necessary (but not sufficient) condition for a repunit to be prime is that its length be prime. Note that, contrary to first appearances, ''not'' all coefficients of all cyclotomic polynomials are 0, 1, or −1. The first exception is . It is not a surprise it takes this long to get an example, because the behavior of the coefficients depends not so much on as on how many odd prime factors appear in . More precisely, it can be shown that if has 1 or 2 odd prime factors (for example, ) then the th cyclotomic polynomial only has coefficients 0, 1 or −1. Thus the first conceivable for which there could be a coefficient besides 0, 1, or −1 is a product of the three smallest odd primes, and that is . This by itself doesn't prove the 105th polynomial has another coefficient, but does show it is the first one which even has a chance of working (and then a computation of the coefficients shows it does). A theorem of Schur says that there are cyclotomic polynomials with coefficients arbitrarily large in
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
. In particular, if n = p_1 p_2 \cdots p_t, where p_1 < p_2 < \cdots < p_t are odd primes, p_1 +p_2>p_t, and ''t'' is odd, then occurs as a coefficient in the th cyclotomic polynomial. Many restrictions are known about the values that cyclotomic polynomials can assume at integer values. For example, if is prime, then if and only if . Cyclotomic polynomials are solvable in radicals, as roots of unity are themselves radicals. Moreover, there exist more informative radical expressions for th roots of unity with the additional property that every value of the expression obtained by choosing values of the radicals (for example, signs of square roots) is a primitive th root of unity. This was already shown by
Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, Geodesy, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observat ...
in 1797. Efficient
algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
s exist for calculating such expressions.


Cyclic groups

The th roots of unity form under multiplication a
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
of order , and in fact these groups comprise all of the finite subgroups of the
multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
of the complex number field. A generator for this cyclic group is a primitive th root of unity. The th roots of unity form an irreducible representation of any cyclic group of order . The orthogonality relationship also follows from group-theoretic principles as described in Character group. The roots of unity appear as entries of the
eigenvector In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by ...
s of any circulant matrix; that is, matrices that are invariant under cyclic shifts, a fact that also follows from group representation theory as a variant of Bloch's theorem. In particular, if a circulant
Hermitian matrix In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the ...
is considered (for example, a discretized one-dimensional
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
with periodic boundaries), the orthogonality property immediately follows from the usual orthogonality of eigenvectors of Hermitian matrices.


Cyclotomic fields

By adjoining a primitive th root of unity to \Q, one obtains the th
cyclotomic field In algebraic number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to \Q, the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory ...
\Q(\exp(2\pi i/n)).This field contains all th roots of unity and is the
splitting field In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a polyn ...
of the th cyclotomic polynomial over \Q. The
field extension In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ...
\Q(\exp(2\pi i /n))/\Q has degree φ(''n'') and its
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
is naturally
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to the multiplicative
group of units In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the ele ...
of the ring \Z/n\Z. As the Galois group of \Q(\exp(2\pi i /n))/\Q is abelian, this is an
abelian extension In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian group, abelian. When the Galois group is also cyclic group, cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galoi ...
. Every subfield of a cyclotomic field is an abelian extension of the rationals. It follows that every ''n''th root of unity may be expressed in term of ''k''-roots, with various ''k'' not exceeding φ(''n''). In these cases
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
can be written out explicitly in terms of
Gaussian period In mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of root of unity, roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis (discre ...
s: this theory from the ''
Disquisitiones Arithmeticae (Latin for ''Arithmetical Investigations'') is a textbook on number theory written in Latin by Carl Friedrich Gauss in 1798, when Gauss was 21, and published in 1801, when he was 24. It had a revolutionary impact on number theory by making the f ...
'' of
Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, Geodesy, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observat ...
was published many years before Galois.The ''Disquisitiones'' was published in 1801, Galois was born in 1811, died in 1832, but wasn't published until 1846. Conversely, ''every'' abelian extension of the rationals is such a subfield of a cyclotomic field – this is the content of a theorem of Kronecker, usually called the '' Kronecker–Weber theorem'' on the grounds that Weber completed the proof.


Relation to quadratic integers

For , both roots of unity and are
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s. For three values of , the roots of unity are
quadratic integer In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. A complex number is called a quadratic integer if it is a root of some monic polynomial (a polynomial whose leading coefficient is 1) of degree tw ...
s: * For they are
Eisenstein integer In mathematics, the Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are the complex numbers of the form : z = a + b\omega , where and are integers and : \omega = \frac ...
s (). * For they are
Gaussian integer In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf ...
s (): see
Imaginary unit The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
. For four other values of , the primitive roots of unity are not quadratic integers, but the sum of any root of unity with its
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
(also an th root of unity) is a quadratic integer. For , none of the non-real roots of unity (which satisfy a
quartic equation In mathematics, a quartic equation is one which can be expressed as a ''quartic function'' equaling zero. The general form of a quartic equation is :ax^4+bx^3+cx^2+dx+e=0 \, where ''a'' ≠ 0. The quartic is the highest order polynom ...
) is a quadratic integer, but the sum of each root with its complex conjugate (also a 5th root of unity) is an element of the ring (). For two pairs of non-real 5th roots of unity these sums are inverse
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \fr ...
and
minus The plus sign () and the minus sign () are mathematical symbols used to denote positive and negative functions, respectively. In addition, the symbol represents the operation of addition, which results in a sum, while the symbol represent ...
golden ratio. For , for any root of unity equals to either 0, ±2, or ± (). For , for any root of unity, equals to either 0, ±1, ±2 or ± ().


See also

* Argand system *
Circle group In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
, the unit complex numbers *
Cyclotomic field In algebraic number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to \Q, the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory ...
* Group scheme of roots of unity *
Dirichlet character In analytic number theory and related branches of mathematics, a complex-valued arithmetic function \chi: \mathbb\rightarrow\mathbb is a Dirichlet character of modulus m (where m is a positive integer) if for all integers a and b: # \chi(ab) = \ch ...
* Ramanujan's sum *
Witt vector In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors W(\mathbb_p) over the finite field o ...
* Teichmüller character


Notes


References

* * * * * * * {{DEFAULTSORT:Root of Unity Algebraic numbers Cyclotomic fields Polynomials 1 (number) Complex numbers