HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the characteristic of a ring , often denoted , is defined to be the smallest positive number of copies of the ring's
multiplicative identity In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
() that will sum to the
additive identity In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element in the set, yields . One of the most familiar additive identities is the number 0 from elementary ma ...
(). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise.


Motivation

The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the
exponent In mathematics, exponentiation, denoted , is an operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, i ...
of the ring's
additive group An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structu ...
, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of rngs (see '); for (unital) rings the two definitions are equivalent due to their
distributive law In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary ...
.


Equivalent characterizations

* The characteristic of a ring is the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
such that is the kernel of the unique
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
from \mathbb to . * The characteristic is the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
such that contains a
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to the
factor ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space (linear algebra), quo ...
\mathbb/n\mathbb, which is the
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of the above homomorphism. * When the non-negative integers are partially ordered by divisibility, then is the smallest and is the largest. Then the characteristic of a ring is the smallest value of for which . If nothing "smaller" (in this ordering) than will suffice, then the characteristic is . This is the appropriate partial ordering because of such facts as that is the
least common multiple In arithmetic and number theory, the least common multiple (LCM), lowest common multiple, or smallest common multiple (SCM) of two integers ''a'' and ''b'', usually denoted by , is the smallest positive integer that is divisible by both ''a'' and ...
of and , and that no ring homomorphism exists unless divides . * The characteristic of a ring is precisely if the statement for all implies that is a multiple of .


Case of rings

If and are rings and there exists a
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
, then the characteristic of divides the characteristic of . This can sometimes be used to exclude the possibility of certain ring homomorphisms. The only ring with characteristic is the
zero ring In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which fo ...
, which has only a single element . If a nontrivial ring does not have any nontrivial
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
s, then its characteristic is either or
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
. In particular, this applies to all fields, to all
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
s, and to all
division ring In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicativ ...
s. Any ring of characteristic zero is infinite. The ring \mathbb/n\mathbb of integers
modulo In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , mo ...
has characteristic . If is a
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
of , then and have the same characteristic. For example, if is prime and is an
irreducible polynomial In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted f ...
with coefficients in the field \mathbb F_p with elements, then the
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
\mathbb F_p (q(X)) is a field of characteristic . Another example: The field \mathbb of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s contains \mathbb, so the characteristic of \mathbb is . A \mathbb/n\mathbb-algebra is equivalently a ring whose characteristic divides . This is because for every ring there is a ring homomorphism \mathbb\to R, and this map factors through \mathbb/n\mathbb if and only if the characteristic of divides . In this case for any in the ring, then adding to itself times gives . If a commutative ring has ''prime characteristic'' , then we have for all elements and in – the normally incorrect " freshman's dream" holds for power . The map then defines a
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
, which is called the '' Frobenius homomorphism''. If is an
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
it is
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
.


Case of fields

As mentioned above, the characteristic of any field is either or a prime number. A field of non-zero characteristic is called a field of ''finite characteristic'' or ''positive characteristic'' or ''prime characteristic''. The ''characteristic exponent'' is defined similarly, except that it is equal to when the characteristic is ; otherwise it has the same value as the characteristic. Any field has a unique minimal subfield, also called its
prime field In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is wid ...
. This subfield is isomorphic to either the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
field \mathbb or a finite field \mathbb F_p of prime order. Two prime fields of the same characteristic are isomorphic, and this isomorphism is unique. In other words, there is essentially a unique prime field in each characteristic.


Fields of characteristic zero

The fields of ''characteristic zero'' are those that have a subfield isomorphic to the field of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s. The most common of such fields are the subfields of the field of the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s; this includes the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s \mathbb and all
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
s. Other fields of characteristic zero are the p-adic fields that are widely used in number theory. Fields of
rational fraction In algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are \frac and \frac. Algebraic fractions are subject to the same laws as arithmetic fractions. A ration ...
s over the integers or a field of characteristic zero are other common examples.
Ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
s always have characteristic zero; they include \mathbb and \mathbb.


Fields of prime characteristic

The
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
has characteristic . There exist infinite fields of prime characteristic. For example, the field of all
rational function In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
s over \mathbb/p\mathbb, the
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ...
of \mathbb/p\mathbb or the field of formal Laurent series \mathbb/p\mathbb((T)). The size of any finite ring of prime characteristic is a power of . Since in that case it contains \mathbb/p\mathbb it is also a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over that field, and from
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
we know that the sizes of finite vector spaces over finite fields are a power of the size of the field. This also shows that the size of any finite vector space is a prime power.


See also

* Ring of mixed characteristic


Notes


References


Sources

* {{refend Ring theory Field (mathematics)