HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a polyhedral compound is a figure that is composed of several
polyhedra In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary su ...
sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram. The outer vertices of a compound can be connected to form a
convex polyhedron In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary su ...
called its
convex hull In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, ...
. A compound is a faceting of its convex hull. Another convex polyhedron is formed by the small central space common to all members of the compound. This polyhedron can be used as the core for a set of stellations.


Regular compounds

A regular polyhedral compound can be defined as a compound which, like a
regular polyhedron A regular polyhedron is a polyhedron whose symmetry group acts transitive group action, transitively on its Flag (geometry), flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In ...
, is vertex-transitive, edge-transitive, and face-transitive. Unlike the case of polyhedra, this is not equivalent to the
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
acting transitively on its
flags A flag is a piece of fabric (most often rectangular) with distinctive colours and design. It is used as a symbol, a signalling device, or for decoration. The term ''flag'' is also used to refer to the graphic design employed, and flags have ...
; the compound of two tetrahedra is the only regular compound with that property. There are five regular compounds of polyhedra: Best known is the regular compound of two tetrahedra, often called the stella octangula, a name given to it by
Kepler Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws of p ...
. The vertices of the two tetrahedra define a
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
, and the intersection of the two define a regular
octahedron In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of i ...
, which shares the same face-planes as the compound. Thus the compound of two tetrahedra is a stellation of the octahedron, and in fact, the only finite stellation thereof. The regular compound of five tetrahedra comes in two enantiomorphic versions, which together make up the regular compound of ten tetrahedra. The regular compound of ten tetrahedra can also be seen as a compound of five stellae octangulae. Each of the regular tetrahedral compounds is self-dual or dual to its chiral twin; the regular compound of five cubes and the regular compound of five octahedra are dual to each other. Hence, regular polyhedral compounds can also be regarded as dual-regular compounds. Coxeter's notation for regular compounds is given in the table above, incorporating
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
s. The material inside the square brackets, 'd'' denotes the components of the compound: ''d'' separate 's. The material ''before'' the square brackets denotes the vertex arrangement of the compound: ''c'' 'd''is a compound of ''d'' 's sharing the vertices of counted ''c'' times. The material ''after'' the square brackets denotes the facet arrangement of the compound: 'd'''e'' is a compound of ''d'' 's sharing the faces of counted ''e'' times. These may be combined: thus ''c'' 'd'''e'' is a compound of ''d'' 's sharing the vertices of counted ''c'' times ''and'' the faces of counted ''e'' times. This notation can be generalised to compounds in any number of dimensions.


Dual compounds

A dual compound is composed of a polyhedron and its dual, arranged reciprocally about a common midsphere, such that the edge of one polyhedron intersects the dual edge of the dual polyhedron. There are five dual compounds of the regular polyhedra. The core is the rectification of both solids. The hull is the dual of this rectification, and its rhombic faces have the intersecting edges of the two solids as diagonals (and have their four alternate vertices). For the convex solids, this is the
convex hull In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, ...
. The tetrahedron is self-dual, so the dual compound of a tetrahedron with its dual is the regular stellated octahedron. The octahedral and icosahedral dual compounds are the first stellations of the cuboctahedron and
icosidodecahedron In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (''icosi-'') triangular faces and twelve (''dodeca-'') pentagonal faces. An icosidodecahedron has 30 identical Vertex (geometry), vertices, with two triang ...
, respectively. The small stellated dodecahedral (or great dodecahedral) dual compound has the great dodecahedron completely interior to the small stellated dodecahedron.


Uniform compounds

In 1976 John Skilling published ''Uniform Compounds of Uniform Polyhedra'' which enumerated 75 compounds (including 6 as infinite prismatic sets of compounds, #20-#25) made from uniform polyhedra with rotational symmetry. (Every vertex is vertex-transitive and every vertex is transitive with every other vertex.) This list includes the five regular compounds above

The 75 uniform compounds are listed in the Table below. Most are shown singularly colored by each polyhedron element. Some chiral pairs of face groups are colored by symmetry of the faces within each polyhedron. * 1-19: Miscellaneous (4,5,6,9,17 are the 5 ''regular compounds'') * 20-25: Prism symmetry embedded in Dihedral symmetry in three dimensions, prism symmetry, * 26-45: Prism symmetry embedded in octahedral or
icosahedral symmetry In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual polyhedr ...
, * 46-67: Tetrahedral symmetry embedded in octahedral or icosahedral symmetry, * 68-75: enantiomorph pairs


Other compounds

* Compound of three octahedra * Compound of four cubes Two polyhedra that are compounds but have their elements rigidly locked into place are the small complex icosidodecahedron (compound of
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical tha ...
and great dodecahedron) and the great complex icosidodecahedron (compound of small stellated dodecahedron and great icosahedron). If the definition of a uniform polyhedron is generalised, they are uniform. The section for enantiomorph pairs in Skilling's list does not contain the compound of two great snub dodecicosidodecahedra, as the pentagram faces would coincide. Removing the coincident faces results in the compound of twenty octahedra.


4-polytope compounds

In 4-dimensions, there are a large number of regular compounds of regular polytopes. Coxeter lists a few of these in his book Regular Polytopes.Regular polytopes, Table VII, p. 305 McMullen added six in his paper ''New Regular Compounds of 4-Polytopes''.McMullen, Peter (2018), ''New Regular Compounds of 4-Polytopes'', New Trends in Intuitive Geometry, 27: 307–320 Self-duals: Dual pairs: Uniform compounds and duals with convex 4-polytopes: The superscript (var) in the tables above indicates that the labeled compounds are distinct from the other compounds with the same number of constituents.


Compounds with regular star 4-polytopes

Self-dual star compounds: Dual pairs of compound stars: Uniform compound stars and duals:


Compounds with duals

Dual positions:


Group theory

In terms of
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, if ''G'' is the symmetry group of a polyhedral compound, and the group acts transitively on the polyhedra (so that each polyhedron can be sent to any of the others, as in uniform compounds), then if ''H'' is the stabilizer of a single chosen polyhedron, the polyhedra can be identified with the
orbit space In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under fun ...
''G''/''H'' – the coset ''gH'' corresponds to which polyhedron ''g'' sends the chosen polyhedron to.


Compounds of tilings

There are eighteen two-parameter families of regular compound tessellations of the Euclidean plane. In the hyperbolic plane, five one-parameter families and seventeen isolated cases are known, but the completeness of this listing has not been enumerated. The Euclidean and hyperbolic compound families 2 (4 ≤ ''p'' ≤ ∞, ''p'' an integer) are analogous to the spherical stella octangula, 2 . A known family of regular Euclidean compound honeycombs in any number of dimensions is an infinite family of compounds of hypercubic honeycombs, all sharing vertices and faces with another hypercubic honeycomb. This compound can have any number of hypercubic honeycombs. There are also ''dual-regular'' tiling compounds. A simple example is the E2 compound of a hexagonal tiling and its dual triangular tiling, which shares its edges with the deltoidal trihexagonal tiling. The Euclidean compounds of two hypercubic honeycombs are both regular and dual-regular.


See also

* List of regular polytope compounds


Footnotes


External links


MathWorld: Polyhedron Compound
– from Virtual Reality Polyhedra *

*http://users.skynet.be/polyhedra.fleurent/Compounds_2/Compounds_2.htm

*


References

*. *. *. *. *. *. * '' Regular Polytopes'', (3rd edition, 1973), Dover edition, * p. 87 Five regular compounds *{{citation, first=Peter, last=McMullen, title=New Trends in Intuitive Geometry , chapter=New Regular Compounds of 4-Polytopes , series=Bolyai Society Mathematical Studies , volume=27, pages=307–320, year=2018, doi=10.1007/978-3-662-57413-3_12, isbn=978-3-662-57412-6 .