In
mathematics, the plethystic exponential is a certain
operator
Operator may refer to:
Mathematics
* A symbol indicating a mathematical operation
* Logical operator or logical connective in mathematical logic
* Operator (mathematics), mapping that acts on elements of a space to produce elements of another ...
defined on (formal)
power series
In mathematics, a power series (in one variable) is an infinite series of the form
\sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots
where ''an'' represents the coefficient of the ''n''th term and ''c'' is a con ...
which, like the usual
exponential function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, ...
, translates addition into multiplication. This exponential operator appears naturally in the theory of
symmetric function
In mathematics, a function of n variables is symmetric if its value is the same no matter the order of its arguments. For example, a function f\left(x_1,x_2\right) of two arguments is a symmetric function if and only if f\left(x_1,x_2\right) = f ...
s, as a concise relation between the
generating series
In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary serie ...
for
elementary
Elementary may refer to:
Arts, entertainment, and media Music
* ''Elementary'' (Cindy Morgan album), 2001
* ''Elementary'' (The End album), 2007
* ''Elementary'', a Melvin "Wah-Wah Watson" Ragin album, 1977
Other uses in arts, entertainment, a ...
,
complete
Complete may refer to:
Logic
* Completeness (logic)
* Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable
Mathematics
* The completeness of the real numbers, which implies ...
and
power sums homogeneous symmetric polynomials in many variables. Its name comes from the operation called
plethysm In algebra, plethysm is an operation on symmetric functions introduced by Dudley E. Littlewood, who denoted it by ⊗ . The word "plethysm" for this operation (after the Greek word πληθυσμός meaning "multiplication") was introdu ...
, defined in the context of so-called
lambda ring
Lambda (}, ''lám(b)da'') is the 11th letter of the Greek alphabet, representing the Dental, alveolar and postalveolar lateral approximants, voiced alveolar lateral approximant . In the system of Greek numerals, lambda has a value of 30. Lambda ...
s.
In
combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many a ...
, the plethystic exponential is a
generating function
In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary ser ...
for many well studied sequences of
integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
,
polynomials
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
or power series, such as the number of integer
partitions
Partition may refer to:
Computing Hardware
* Disk partitioning, the division of a hard disk drive
* Memory partition, a subdivision of a computer's memory, usually for use by a single job
Software
* Partition (database), the division of a ...
. It is also an important technique in the
enumerative combinatorics
Enumerative combinatorics is an area of combinatorics that deals with the number of ways that certain patterns can be formed. Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infin ...
of unlabelled
graphs
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
* Graph (topology), a topological space resembling a graph in the sense of discr ...
, and many other combinatorial objects.
In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
and
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, the plethystic exponential of a certain geometric/topologic invariant of a space, determines the corresponding invariant of its symmetric products.
Definition, main properties and basic examples
Let
be a ring of formal power series in the variable
, with coefficients in a commutative ring
. Denote by
:
the ideal consisting of power series without constant term. Then, given
, its plethystic exponential