In
quantum computing
A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of wave-particle duality, both particles and waves, and quantum computing takes advantage of this behavior using s ...
, a ''
qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical syste ...
'' is a unit of information analogous to a
bit
The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented as ...
(binary digit) in
classical computing, but it is affected by
quantum mechanical properties such as
superposition
In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' and ''y'' would be any expression of the form ...
and
entanglement which allow qubits to be in some ways more powerful than classical bits for some
tasks. Qubits are used in
quantum circuit
In quantum information theory, a quantum circuit is a model for quantum computation, similar to classical circuits, in which a computation is a sequence of quantum gates, measurements, initializations of qubits to known values, and possibly o ...
s and
quantum algorithm
In quantum computing, a quantum algorithm is an algorithm that runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite seq ...
s composed of
quantum logic gates
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an fundamental interaction, interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of ...
to solve
computational problem
In theoretical computer science, a computational problem is one that asks for a solution in terms of an algorithm. For example, the problem of factoring
:"Given a positive integer ''n'', find a nontrivial prime factor of ''n''."
is a computati ...
s, where they are used for
input/output
In computing, input/output (I/O, i/o, or informally io or IO) is the communication between an information processing system, such as a computer, and the outside world, such as another computer system, peripherals, or a human operator. Inputs a ...
and intermediate computations.
A physical qubit is a physical device that behaves as a
two-state quantum system
In quantum mechanics, a two-state system (also known as a two-level system) is a quantum system that can exist in any quantum superposition of two independent (physically distinguishable) quantum states. The Hilbert space describing such a syste ...
, used as a component of a
computer system
A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic sets of operations known as ''programs'', wh ...
.
A logical qubit is a physical or abstract qubit that performs as specified in a
quantum algorithm
In quantum computing, a quantum algorithm is an algorithm that runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite seq ...
or quantum circuit
subject to
unitary transformation
In mathematics, a unitary transformation is a linear isomorphism that preserves the inner product: the inner product of two vectors before the transformation is equal to their inner product after the transformation.
Formal definition
More precise ...
s, has a long enough
coherence time
For an electromagnetic wave, the coherence time is the time over which a propagating wave (especially a laser or maser beam) may be considered coherent, meaning that its phase is, on average, predictable.
In long-distance transmission systems ...
to be usable by quantum logic gates (cf.
propagation delay
Propagation delay is the time duration taken for a signal to reach its destination, for example in the electromagnetic field, a wire, speed of sound, gas, fluid or seismic wave, solid body.
Physics
* An electromagnetic wave travelling through ...
for classical logic gates).
Since the development of the first quantum computer in 1998, most technologies used to implement qubits face issues of stability,
decoherence
Quantum decoherence is the loss of quantum coherence. It involves generally a loss of information of a system to its environment. Quantum decoherence has been studied to understand how quantum systems convert to systems that can be expla ...
,
fault tolerance
Fault tolerance is the ability of a system to maintain proper operation despite failures or faults in one or more of its components. This capability is essential for high-availability, mission-critical, or even life-critical systems.
Fault t ...
and
scalability
Scalability is the property of a system to handle a growing amount of work. One definition for software systems specifies that this may be done by adding resources to the system.
In an economic context, a scalable business model implies that ...
.
Because of this, many physical qubits are needed for the purposes of
error-correction to produce an entity which behaves logically as a single qubit would in a quantum circuit or algorithm; this is the subject of
quantum error correction
Quantum error correction (QEC) is a set of techniques used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant ...
.
Thus, contemporary logical qubits
typically consist of many physical qubits to provide stability, error-correction and fault tolerance needed to perform useful computations.
In 2023, Google researchers showed how quantum error correction can improve logical qubit performance by increasing the physical qubit count.
These results found that a larger logical qubit (49 physical qubits) had a lower error rate, about 2.9 percent per round of error correction, compared to a rate of about 3.0 percent for the smaller logical qubit (17 physical qubits).
In 2024, IBM researchers created a quantum error correction code 10 times more efficient than previous research, protecting 12 logical qubits for roughly a million cycles of error checks using 288 qubits.
The work demonstrates error correction on near-term devices while reducing overhead – the number of physical qubits required to keep errors low.
In 2024, Microsoft and Quantinuum announced experimental results that showed logical qubits could be created with significantly fewer physical qubits. The team used quantum error correction techniques developed by Microsoft and Quantinuum's
trapped ion hardware to use 30 physical qubits to form four logical qubits. Scientists used a qubit virtualization system and active syndrome extraction—also called repeated error correction to accomplish this. This work defines how to achieve logical qubits within quantum computation.
Overview
1-bit and 2-bit
quantum gate
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. Quantum logic gates are the building blocks of quantu ...
operations have been shown to be universal. A quantum algorithm can be instantiated as a
quantum circuit
In quantum information theory, a quantum circuit is a model for quantum computation, similar to classical circuits, in which a computation is a sequence of quantum gates, measurements, initializations of qubits to known values, and possibly o ...
.
A logical qubit specifies how a single qubit should behave in a quantum algorithm, subject to quantum logic operations which can be built out of quantum logic gates. However, issues in current technologies preclude single
two-state quantum system
In quantum mechanics, a two-state system (also known as a two-level system) is a quantum system that can exist in any quantum superposition of two independent (physically distinguishable) quantum states. The Hilbert space describing such a syste ...
s, which can be used as physical qubits, from reliably encoding and retaining this information for long enough to be useful. Therefore, current attempts to produce scalable quantum computers require quantum error correction, and multiple (currently many) physical qubits must be used to create a single, error-tolerant logical qubit. Depending on the error-correction scheme used, and the error rates of each physical qubit, a single logical qubit could be formed of up to 1,000 physical qubits.
Topological quantum computing
The approach of
topological qubits, which takes advantage of
topological effects in quantum mechanics, has been proposed as needing many fewer or even a single physical qubit per logical qubit.
Topological qubits rely on a class of particles called
anyon
In physics, an anyon is a type of quasiparticle so far observed only in two-dimensional physical system, systems. In three-dimensional systems, only two kinds of elementary particles are seen: fermions and bosons. Anyons have statistical proper ...
s which have
spin
Spin or spinning most often refers to:
* Spin (physics) or particle spin, a fundamental property of elementary particles
* Spin quantum number, a number which defines the value of a particle's spin
* Spinning (textiles), the creation of yarn or thr ...
that is neither
half-integral (
fermion
In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s) nor
integral
In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
(
boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s), and therefore obey neither the
Fermi–Dirac statistics
Fermi–Dirac statistics is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of part ...
nor the
Bose–Einstein statistics
In quantum statistics, Bose–Einstein statistics (B–E statistics) describes one of two possible ways in which a collection of non-interacting identical particles may occupy a set of available discrete energy states at thermodynamic equilibri ...
of particle behavior.
Anyons exhibit
braid symmetry
In mathematics, the braid group on strands (denoted B_n), also known as the Artin braid group, is the group whose elements are equivalence classes of Braid theory, -braids (e.g. under ambient isotopy), and whose group operation is composition of ...
in their
world line
The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept of modern physics, and particularly theoretical physics.
The concept of a "world line" is distinguished from c ...
s, which has desirable properties for the stability of qubits. Notably, anyons must exist in systems constrained to two spatial dimensions or fewer, according to the
spin–statistics theorem, which states that in 3 or more spatial dimensions, only fermions and bosons are possible.
In 2025, researchers made progress in topological quantum computing by successfully measuring the state of special particles called
Majorana zero modes in a single step.
See also
*
Quantum error correction
Quantum error correction (QEC) is a set of techniques used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant ...
and the
quantum threshold theorem
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
*
*
Superconductive quantum computing
**
Josephson junction
In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. The effect is named after the British physicist Brian Josephson, who predicted in 1962 ...
*
Trapped-ion quantum computing
* Semiconductor-based quantum computing
**
Quantum dot
Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic i ...
*
Topological quantum computing
References
{{Quantum computing
Quantum computing