
Fluorocarbons are
chemical compound
A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
s with
carbon-fluorine bonds. Compounds that contain many C-F bonds often have distinctive properties, e.g., enhanced stability, volatility, and hydrophobicity. Several fluorocarbons and their derivatives are commercial
polymers,
refrigerants,
drug
A drug is any chemical substance other than a nutrient or an essential dietary ingredient, which, when administered to a living organism, produces a biological effect. Consumption of drugs can be via insufflation (medicine), inhalation, drug i ...
s, and
anesthetics.
[
]
Nomenclature
Perfluorocarbons or PFCs, are
organofluorine compounds with the formula C
xF
y, meaning they contain only
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and
fluorine
Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
.
The terminology is not strictly followed and many fluorine-containing organic compounds are also called fluorocarbons.
[ Compounds with the prefix perfluoro- are hydrocarbons, including those with heteroatoms, wherein all C-H bonds have been replaced by C-F bonds.][
] Fluorocarbons includes perfluoroalkanes, fluoroalkenes, fluoroalkynes, and perfluoroaromatic compounds.
Perfluoroalkanes
Chemical properties
Perfluoroalkanes are very stable because of the strength of the carbon–fluorine bond, one of the strongest in organic chemistry.[
]
Its strength is a result of the electronegativity of fluorine imparting partial ionic character through partial charges on the carbon and fluorine atoms, which shorten and strengthen the bond (compared to carbon-hydrogen bonds) through favorable covalent interactions. Additionally, multiple carbon–fluorine bonds increase the strength and stability of other nearby carbon–fluorine bonds on the same geminal carbon, as the carbon has a higher positive partial charge.[ Furthermore, multiple carbon–fluorine bonds also strengthen the "skeletal" carbon–carbon bonds from the inductive effect.][ Therefore, saturated fluorocarbons are more chemically and thermally stable than their corresponding hydrocarbon counterparts, and indeed any other organic compound. They are susceptible to attack by very strong reductants, e.g. Birch reduction and very specialized organometallic complexes.][
]
Fluorocarbons are colorless and have high density, up to over twice that of water. They are not miscible with most organic solvents (e.g., ethanol, acetone, ethyl acetate, and chloroform), but are miscible with some hydrocarbons (e.g., hexane in some cases). They have very low solubility in water, and water has a very low solubility in them (on the order of 10 ppm). They have low refractive indices
In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
.
As the high electronegativity
Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
of fluorine reduces the polarizability
Polarizability usually refers to the tendency of matter, when subjected to an electric field, to acquire an electric dipole moment in proportion to that applied field. It is a property of particles with an electric charge. When subject to an elect ...
of the atom,[ fluorocarbons are only weakly susceptible to the fleeting dipoles that form the basis of the London dispersion force. As a result, fluorocarbons have low intermolecular attractive forces and are lipophobic in addition to being ]hydrophobic
In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.
Hydrophobic molecules tend to be nonpolar and, thu ...
and non-polar. Reflecting the weak intermolecular force
An intermolecular force (IMF; also secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction
or repulsion which act between atoms and other types of neighbouring particles (e.g. ...
s these compounds exhibit low viscosities
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup h ...
when compared to liquids of similar boiling point
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.
The boiling point of a liquid varies depending upon the surrounding envi ...
s, low surface tension
Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension (physics), tension is what allows objects with a higher density than water such as razor blades and insects (e.g. Ge ...
and low heats of vaporization. The low attractive forces in fluorocarbon liquids make them compressible (low bulk modulus
The bulk modulus (K or B or k) of a substance is a measure of the resistance of a substance to bulk compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting ''relative'' decrease of the volume.
Other mo ...
) and able to dissolve gas relatively well. Smaller fluorocarbons are extremely volatile.[ There are five perfluoroalkane gases: tetrafluoromethane (bp −128 °C), hexafluoroethane (bp −78.2 °C), octafluoropropane (bp −36.5 °C), perfluoro-n-butane (bp −2.2 °C) and perfluoro-iso-butane (bp −1 °C). Nearly all other fluoroalkanes are liquids; the most notable exception is perfluorocyclohexane, which sublimes at 51 °C. Fluorocarbons also have low surface energies and high ]dielectric
In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
strengths.[
File:Tetrafluormethan.svg, Carbon tetrafluoride, the simplest perfluoroalkane
File:Perfluorooctane.png, Perfluorooctane, a linear perfluoroalkane
File:Perfluoro(2-methylpentane).svg, Perfluoro-2-methylpentane, a branched perfluoroalkane
File:Perfluoro-1,3-dimethylcyclohexane.svg, Perfluoro-1,3-dimethylcyclohexane, a cyclic perfluoroalkane
File:Perfluorodecaline.svg, Perfluorodecalin, a polycyclic perfluoroalkane
]
Flammability
In the 1960s there was a lot of interest in fluorocarbons as anesthetics. The research did not produce any anesthetics, but the research included tests on the issue of flammability, and showed that the tested fluorocarbons were not flammable in air in any proportion, though most of the tests were in pure oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
or pure nitrous oxide
Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or factitious air, among others, is a chemical compound, an Nitrogen oxide, oxide of nitrogen with the Chemical formula, formula . At room te ...
(gases of importance in anesthesiology).
In 1993, 3M considered fluorocarbons as fire extinguishants to replace CFCs. This extinguishing effect has been attributed to their high heat capacity, which takes heat away from the fire. It has been suggested that an atmosphere containing a significant percentage of perfluorocarbons on a space station or similar would prevent fires altogether.
When combustion does occur, toxic fumes result, including carbonyl fluoride, carbon monoxide
Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
, and hydrogen fluoride
Hydrogen fluoride (fluorane) is an Inorganic chemistry, inorganic compound with chemical formula . It is a very poisonous, colorless gas or liquid that dissolves in water to yield hydrofluoric acid. It is the principal industrial source of fluori ...
.
Gas dissolving properties
Perfluorocarbons dissolve relatively high volumes of gases. The high solubility of gases is attributed to the weak intermolecular interactions in these fluorocarbon fluids.
The table shows values for the mole fraction, , of nitrogen dissolved, calculated from the Blood–gas partition coefficient, at 298.15 K (25 °C), 0.101325 MPa.
Manufacture
The development of the fluorocarbon industry coincided with World War II
World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
. Prior to that, fluorocarbons were prepared by reaction of fluorine with the hydrocarbon, i.e., direct fluorination. Because C-C bonds are readily cleaved by fluorine, direct fluorination mainly affords smaller perfluorocarbons, such as tetrafluoromethane, hexafluoroethane, and octafluoropropane.
Fowler process
A major breakthrough that allowed the large scale manufacture of fluorocarbons was the Fowler process. In this process, cobalt trifluoride is used as the source of fluorine. Illustrative is the synthesis of perfluorohexane:
:
The resulting cobalt difluoride is then regenerated, sometimes in a separate reactor:
:
Industrially, both steps are combined, for example in the manufacture of the Flutec range of fluorocarbons by F2 chemicals Ltd, using a vertical stirred bed reactor, with hydrocarbon introduced at the bottom, and fluorine introduced halfway up the reactor. The fluorocarbon vapor is recovered from the top.
Electrochemical fluorination
Electrochemical fluorination (ECF) (also known as the Simons' process) involves electrolysis
In chemistry and manufacturing, electrolysis is a technique that uses Direct current, direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of c ...
of a substrate dissolved in hydrogen fluoride
Hydrogen fluoride (fluorane) is an Inorganic chemistry, inorganic compound with chemical formula . It is a very poisonous, colorless gas or liquid that dissolves in water to yield hydrofluoric acid. It is the principal industrial source of fluori ...
. As fluorine is itself manufactured by the electrolysis of hydrogen fluoride, ECF is a rather more direct route to fluorocarbons. The process proceeds at low voltage (5 – 6 V) so that free fluorine is not liberated. The choice of substrate is restricted as ideally it should be soluble in hydrogen fluoride. Ethers and tertiary amines are typically employed. To make perfluorohexane, trihexylamine is used, for example:
:
The perfluorinated amine will also be produced:
:
Environmental and health concerns
Fluoroalkanes are generally inert and non-toxic.
Fluoroalkanes are not ozone depleting, as they contain no chlorine or bromine atoms, and they are sometimes used as replacements for ozone-depleting chemicals.
The term fluorocarbon is used rather loosely to include any chemical containing fluorine and carbon, including chlorofluorocarbon
Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are fully or partly Halogenation, halogenated hydrocarbons that contain carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F). They are produced as volatility (chemistry), volat ...
s, which are ozone depleting.
Perfluoroalkanes used in medical procedures are rapidly excreted from the body, primarily via expiration with the rate of excretion as a function of the vapour pressure; the half-life for octafluoropropane is less than 2 minutes, compared to about a week for perfluorodecalin.
Low-boiling perfluoroalkanes are potent greenhouse gases, in part due to their very long atmospheric lifetime, and their use is covered by the Kyoto Protocol. The global warming potential
Global warming potential (GWP) is a measure of how much heat a greenhouse gas traps in the atmosphere over a specific time period, relative to carbon dioxide (). It is expressed as a multiple of warming caused by the same mass of carbon dioxide ( ...
(compared to that of carbon dioxide) of many gases can be found in the IPCC 5th assessment report,[Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang (2013]
"Anthropogenic and Natural Radiative Forcing"
(see Table 8.A.1). In: ''Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change''. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. with an extract below for a few perfluoroalkanes.
The aluminium smelting industry has been a major source of atmospheric perfluorocarbons ( tetrafluoromethane and hexafluoroethane especially), produced as by-product of the electrolysis process. However, the industry has been actively involved in reducing emissions in recent years.
Applications
As they are inert, perfluoroalkanes have essentially no chemical uses, but their physical properties have led to their use in many diverse applications. These include:
* Perfluorocarbon tracer
* Liquid dielectric
* Chemical vapor deposition
* Organic Rankine cycle
*Fluorous biphasic catalysis
*Cosmetics
*Ski waxes
As well as several medical uses:
* Contrast-enhanced ultrasound
* Oxygen Therapeutics
* Blood substitute
* Liquid breathing
*Eye surgery
*Tattoo removal
Fluoroalkenes and fluoroalkynes
Unsaturated fluorocarbons are far more reactive than fluoroalkanes. Although difluoroacetylene is unstable (as is typical for related alkynes, see dichloroacetylene),[ hexafluoro-2-butyne and related fluorinated alkynes are well known.
File:Perfluoroisobutene.svg, Perfluoroisobutene, a reactive and highly toxic fluoroalkene gas
File:Tetrafluoroethylene.svg, Tetrafluoroethylene, an important perfluorinated monomer.
File:Hexafluoropropylene.svg, Hexafluoropropylene, another important perfluoroalkene.
File:Hexafluorobutyne.png, Hexafluoro-2-butyne, a perfluoroalkyne.
]
Polymerization
Fluoroalkenes polymerize more exothermically than normal alkenes.[ Unsaturated fluorocarbons have a driving force towards sp3 hybridization due to the electronegative fluorine atoms seeking a greater share of bonding electrons with reduced s character in orbitals.][ The most famous member of this class is tetrafluoroethylene, which is used to manufacture ]polytetrafluoroethylene
Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene, and has numerous applications because it is chemically inert. The commonly known brand name of PTFE-based composition is Teflon by Chemours, a corporate spin-of ...
(PTFE), better known under the trade name Teflon.
Environmental and health concerns
Fluoroalkenes and fluorinated alkynes are reactive and many are toxic for example perfluoroisobutene. To produce polytetrafluoroethylene
Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene, and has numerous applications because it is chemically inert. The commonly known brand name of PTFE-based composition is Teflon by Chemours, a corporate spin-of ...
various fluorinated surfactants are used, in the process known as Emulsion polymerization, and the surfactant included in the polymer can bioaccumulate.
Perfluoroaromatic compounds
Perfluoroaromatic compounds contain only carbon and fluorine, like other fluorocarbons, but also contain an aromatic ring. The three most important examples are hexafluorobenzene, octafluorotoluene, and octafluoronaphthalene.
File:hexafluorobenzene.svg, Hexafluorobenzene
Perfluoroaromatic compounds can be manufactured via the Fowler process, like fluoroalkanes, but the conditions must be adjusted to prevent full fluorination. They can also be made by heating the corresponding perchloroaromatic compound with potassium fluoride at high temperature (typically 500 °C), during which the chlorine atoms are replaced by fluorine atoms. A third route is defluorination of the fluoroalkane; for example, octafluorotoluene can be made from perfluoromethylcyclohexane by heating to 500 °C with a nickel or iron catalyst.
Perfluoroaromatic compounds are relatively volatile for their molecular weight, with melting and boiling points similar to the corresponding aromatic compound, as the table below shows. They have high density and are non-flammable. For the most part, they are colorless liquids. Unlike the perfluoralkanes, they tend to be miscible with common solvents.
See also
* :Fluorocarbons
* Fluorochemical industry
* Hydrofluorocarbon
* Fluorographene
* Perfluorocycloalkene (PFCA)
References
External links
Fluorocarbons and Sulphur Hexafluoride, proposed by the European Fluorocarbons Technical Committee
CFCs and Ozone Depletion
Freeview video provided by the Vega Science Trust.
Introduction to fluoropolymers
Organofluorine chemistry by Graham Sandford
{{Authority control
Greenhouse gases