In mathematics, a partial cyclic order is a
ternary relation that generalizes a
cyclic order in the same way that a
partial order
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
generalizes a
linear order.
Definition
Over a given set, a partial cyclic order is a ternary relation
that is:
* ''cyclic'', i.e. it is
invariant under a
cyclic permutation:
* ''asymmetric'':
* ''transitive'':
and
Constructions
Direct sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a mo ...
Direct product
In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one t ...
Power
Dedekind–MacNeille completion
In mathematics, specifically order theory, the Dedekind–MacNeille completion of a partially ordered set is the smallest complete lattice that contains it. It is named after Holbrook Mann MacNeille whose 1937 paper first defined and construc ...
Extensions
linear extension
In order theory, a branch of mathematics, a linear extension of a partial order is a total order (or linear order) that is compatible with the partial order. As a classic example, the lexicographic order of totally ordered sets is a linear ext ...
,
Szpilrajn extension theorem
standard example
The relationship between partial and total cyclic orders is more complex than the relationship between partial and total linear orders. To begin with, not every partial cyclic order can be extended to a total cyclic order. An example is the following relation on the first thirteen letters of the alphabet: ∪ . This relation is a partial cyclic order, but it cannot be extended with either ''abc'' or ''cba''; either attempt would result in a contradiction.
The above was a relatively mild example. One can also construct partial cyclic orders with higher-order obstructions such that, for example, any 15 triples can be added but the 16th cannot. In fact, cyclic ordering is
NP-complete
In computational complexity theory, a problem is NP-complete when:
# it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by tryin ...
, since it solves
3SAT
In logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) is the problem of determining if there exists an interpretation that satisfies ...
. This is in stark contrast with the recognition problem for linear orders, which can be solved in
linear time.
Notes
References
*
*
*
*
*
Further reading
*
*
*
*
*
*
*
*
*
*
*
{{Refend
Order theory
Circles