Noisy version ("Learning Parity with Noise")
In Learning Parity with Noise (LPN), the samples may contain some error. Instead of samples (''x'', ''ƒ''(''x'')), the algorithm is provided with (''x'', ''y''), where for random boolean The noisy version of the parity learning problem is conjectured to be hard.See also
* Learning with errorsReferences
* Avrim Blum, Adam Kalai, and Hal Wasserman, “Noise-tolerant learning, the parity problem, and the statistical query model,” J. ACM 50, no. 4 (2003): 506–519. * Adam Tauman Kalai, Yishay Mansour, and Elad Verbin, “On agnostic boosting and parity learning,” in Proceedings of the 40th annual ACM symposium on Theory of computing (Victoria, British Columbia, Canada: ACM, 2008), 629–638, http://portal.acm.org/citation.cfm?id=1374466. * Oded Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in Proceedings of the thirty-seventh annual ACM symposium on Theory of computing (Baltimore, MD, USA: ACM, 2005), 84–93, http://portal.acm.org/citation.cfm?id=1060590.1060603. Machine learning {{Mathapplied-stub