HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''
Category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, ca ...
'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the notion of category provides a fundamental and abstract way to describe mathematical entities and their relationships. In addition to formalizing mathematics, category theory is also used to formalize many other systems in computer science, such as the
semantics of programming languages In programming language theory, semantics is the rigorous mathematical study of the meaning of programming languages. Semantics assigns computational meaning to valid strings in a programming language syntax. Semantics describes the processe ...
. Two categories are the same if they have the same collection of objects, the same collection of arrows, and the same associative method of composing any pair of arrows. Two ''different'' categories may also be considered " equivalent" for purposes of category theory, even if they do not have precisely the same structure. Well-known categories are denoted by a short capitalized word or abbreviation in bold or italics: examples include
Set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
, the category of sets and set functions; Ring, the category of rings and ring homomorphisms; and Top, the category of
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
s and continuous maps. All of the preceding categories have the
identity map Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
as identity arrows and composition as the associative operation on arrows. The classic and still much used text on category theory is ''
Categories for the Working Mathematician ''Categories for the Working Mathematician'' (''CWM'') is a textbook in category theory written by American mathematician Saunders Mac Lane, who cofounded the subject together with Samuel Eilenberg. It was first published in 1971, and is based on ...
'' by Saunders Mac Lane. Other references are given in the References below. The basic definitions in this article are contained within the first few chapters of any of these books. Any
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
can be understood as a special sort of category (with a single object whose self-morphisms are represented by the elements of the monoid), and so can any preorder.


Definition

There are many equivalent definitions of a category. One commonly used definition is as follows. A category ''C'' consists of * a
class Class or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used differently ...
ob(''C'') of
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
s, * a class hom(''C'') of morphisms, or arrows, or maps between the objects, *a domain, or source object class function \mathrm\colon \mathrm(C)\rightarrow \mathrm(C) , *a codomain, or target object class function \mathrm\colon \mathrm(C)\rightarrow \mathrm(C) , * for every three objects ''a'', ''b'' and ''c'', a binary operation hom(''a'', ''b'') × hom(''b'', ''c'') → hom(''a'', ''c'') called ''composition of morphisms''; the composition of ''f'' : ''a'' → ''b'' and ''g'' : ''b'' → ''c'' is written as ''g'' ∘ ''f'' or ''gf''. (Some authors use "diagrammatic order", writing ''f;g'' or ''fg''). Note: Here hom(''a'', ''b'') denotes the subclass of morphisms ''f'' in hom(''C'') such that \mathrm(f) = a and \mathrm(f) = b. Such morphisms are often written as ''f'' : ''a'' → ''b''. such that the following axioms hold: * ( associativity) if ''f'' : ''a'' → ''b'', ''g'' : ''b'' → ''c'' and ''h'' : ''c'' → ''d'' then ''h'' ∘ (''g'' ∘ ''f'') = (''h'' ∘ ''g'') ∘ ''f'', and * (
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), an ...
) for every object ''x'', there exists a morphism 1''x'' : ''x'' → ''x'' (some authors write ''id''''x'') called the ''identity morphism for x'', such that every morphism ''f'' : ''a'' → ''x'' satisfies 1''x'' ∘ ''f'' = ''f'', and every morphism ''g'' : ''x'' → ''b'' satisfies ''g'' ∘ 1''x'' = ''g''. We write ''f'': ''a'' → ''b'', and we say "''f'' is a morphism from ''a'' to ''b''". We write hom(''a'', ''b'') (or hom''C''(''a'', ''b'') when there may be confusion about to which category hom(''a'', ''b'') refers) to denote the hom-class of all morphisms from ''a'' to ''b''.Some authors write Mor(''a'', ''b'') or simply ''C''(''a'', ''b'') instead. From these axioms, one can prove that there is exactly one identity morphism for every object. Some authors use a slight variation of the definition in which each object is identified with the corresponding identity morphism.


Small and large categories

A category ''C'' is called small if both ob(''C'') and hom(''C'') are actually sets and not proper classes, and large otherwise. A locally small category is a category such that for all objects ''a'' and ''b'', the hom-class hom(''a'', ''b'') is a set, called a homset. Many important categories in mathematics (such as the category of sets), although not small, are at least locally small. Since, in small categories, the objects form a set, a small category can be viewed as an algebraic structure similar to a
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
but without requiring closure properties. Large categories on the other hand can be used to create "structures" of algebraic structures.


Examples

The
class Class or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used differently ...
of all sets (as objects) together with all functions between them (as morphisms), where the composition of morphisms is the usual
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
, forms a large category,
Set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
. It is the most basic and the most commonly used category in mathematics. The category Rel consists of all sets (as objects) with binary relations between them (as morphisms). Abstracting from relations instead of functions yields allegories, a special class of categories. Any class can be viewed as a category whose only morphisms are the identity morphisms. Such categories are called discrete. For any given
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
''I'', the ''discrete category on I'' is the small category that has the elements of ''I'' as objects and only the identity morphisms as morphisms. Discrete categories are the simplest kind of category. Any preordered set (''P'', ≤) forms a small category, where the objects are the members of ''P'', the morphisms are arrows pointing from ''x'' to ''y'' when ''x'' ≤ ''y''. Furthermore, if ''≤'' is antisymmetric, there can be at most one morphism between any two objects. The existence of identity morphisms and the composability of the morphisms are guaranteed by the reflexivity and the transitivity of the preorder. By the same argument, any
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
and any equivalence relation can be seen as a small category. Any
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
can be seen as a category when viewed as an ordered set. Any
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
(any algebraic structure with a single associative binary operation and an identity element) forms a small category with a single object ''x''. (Here, ''x'' is any fixed set.) The morphisms from ''x'' to ''x'' are precisely the elements of the monoid, the identity morphism of ''x'' is the identity of the monoid, and the categorical composition of morphisms is given by the monoid operation. Several definitions and theorems about monoids may be generalized for categories. Similarly any group can be seen as a category with a single object in which every morphism is ''invertible'', that is, for every morphism ''f'' there is a morphism ''g'' that is both left and right inverse to ''f'' under composition. A morphism that is invertible in this sense is called an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
. A groupoid is a category in which every morphism is an isomorphism. Groupoids are generalizations of groups, group actions and equivalence relations. Actually, in the view of category the only difference between groupoid and group is that a groupoid may have more than one object but the group must have only one. Consider a topological space ''X'' and fix a base point x_0 of ''X'', then \pi_1(X,x_0) is the fundamental group of the topological space ''X'' and the base point x_0, and as a set it has the structure of group; if then let the base point x_0 runs over all points of ''X'', and take the union of all \pi_1(X,x_0), then the set we get has only the structure of groupoid (which is called as the
fundamental groupoid In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a ...
of ''X''): two loops (under equivalence relation of homotopy) may not have the same base point so they cannot multiply with each other. In the language of category, this means here two morphisms may not have the same source object (or target object, because in this case for any morphism the source object and the target object are same: the base point) so they can not compose with each other. Any directed graph generates a small category: the objects are the vertices of the graph, and the morphisms are the paths in the graph (augmented with
loop Loop or LOOP may refer to: Brands and enterprises * Loop (mobile), a Bulgarian virtual network operator and co-founder of Loop Live * Loop, clothing, a company founded by Carlos Vasquez in the 1990s and worn by Digable Planets * Loop Mobile, an ...
s as needed) where composition of morphisms is concatenation of paths. Such a category is called the '' free category'' generated by the graph. The class of all preordered sets with monotonic functions as morphisms forms a category, Ord. It is a concrete category, i.e. a category obtained by adding some type of structure onto Set, and requiring that morphisms are functions that respect this added structure. The class of all groups with group homomorphisms as morphisms and
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
as the composition operation forms a large category, Grp. Like Ord, Grp is a concrete category. The category Ab, consisting of all
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s and their group homomorphisms, is a
full subcategory In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, ...
of Grp, and the prototype of an abelian category. Other examples of concrete categories are given by the following table. Fiber bundles with bundle maps between them form a concrete category. The category Cat consists of all small categories, with functors between them as morphisms.


Construction of new categories


Dual category

Any category ''C'' can itself be considered as a new category in a different way: the objects are the same as those in the original category but the arrows are those of the original category reversed. This is called the ''dual'' or ''opposite category'' and is denoted ''C''op.


Product categories

If ''C'' and ''D'' are categories, one can form the ''product category'' ''C'' × ''D'': the objects are pairs consisting of one object from ''C'' and one from ''D'', and the morphisms are also pairs, consisting of one morphism in ''C'' and one in ''D''. Such pairs can be composed componentwise.


Types of morphisms

A morphism ''f'' : ''a'' → ''b'' is called * a '' monomorphism'' (or ''monic'') if it is left-cancellable, i.e. ''fg1'' = ''fg2'' implies ''g1'' = ''g2'' for all morphisms ''g''1, ''g2'' : ''x'' → ''a''. * an '' epimorphism'' (or ''epic'') if it is right-cancellable, i.e. ''g1f'' = ''g2f'' implies ''g1'' = ''g2'' for all morphisms ''g1'', ''g2'' : ''b'' → ''x''. * a '' bimorphism'' if it is both a monomorphism and an epimorphism. * a '' retraction'' if it has a right inverse, i.e. if there exists a morphism ''g'' : ''b'' → ''a'' with ''fg'' = 1''b''. * a '' section'' if it has a left inverse, i.e. if there exists a morphism ''g'' : ''b'' → ''a'' with ''gf'' = 1''a''. * an ''
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
'' if it has an inverse, i.e. if there exists a morphism ''g'' : ''b'' → ''a'' with ''fg'' = 1''b'' and ''gf'' = 1''a''. * an '' endomorphism'' if ''a'' = ''b''. The class of endomorphisms of ''a'' is denoted end(''a''). * an '' automorphism'' if ''f'' is both an endomorphism and an isomorphism. The class of automorphisms of ''a'' is denoted aut(''a''). Every retraction is an epimorphism. Every section is a monomorphism. The following three statements are equivalent: * ''f'' is a monomorphism and a retraction; * ''f'' is an epimorphism and a section; * ''f'' is an isomorphism. Relations among morphisms (such as ''fg'' = ''h'') can most conveniently be represented with commutative diagrams, where the objects are represented as points and the morphisms as arrows.


Types of categories

* In many categories, e.g. Ab or Vect''K'', the hom-sets hom(''a'', ''b'') are not just sets but actually
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s, and the composition of morphisms is compatible with these group structures; i.e. is bilinear. Such a category is called preadditive. If, furthermore, the category has all finite products and coproducts, it is called an additive category. If all morphisms have a kernel and a cokernel, and all epimorphisms are cokernels and all monomorphisms are kernels, then we speak of an abelian category. A typical example of an abelian category is the category of abelian groups. * A category is called
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
if all small limits exist in it. The categories of sets, abelian groups and topological spaces are complete. * A category is called
cartesian closed In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mat ...
if it has finite direct products and a morphism defined on a finite product can always be represented by a morphism defined on just one of the factors. Examples include
Set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
and CPO, the category of complete partial orders with Scott-continuous functions. * A topos is a certain type of cartesian closed category in which all of mathematics can be formulated (just like classically all of mathematics is formulated in the category of sets). A topos can also be used to represent a logical theory.


See also

* Enriched category * Higher category theory * Quantaloid *
Table of mathematical symbols A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formul ...


Notes


References

* (now free on-line edition,
GNU FDL The GNU Free Documentation License (GNU FDL or simply GFDL) is a copyleft license for free documentation, designed by the Free Software Foundation (FSF) for the GNU Project. It is similar to the GNU General Public License, giving readers the r ...
). * . * . *. * . * * . * . * . * . * . * . * {{Authority control *