HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, orthogonality is the generalization of the geometric notion of '' perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendicular'' is more specifically used for lines and planes that intersect to form a right angle, whereas ''orthogonal'' is used in generalizations, such as ''
orthogonal vectors In mathematics, an inner product space (or, rarely, a Hausdorff space, Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation (mathematics), operation called an inner product. The inner product of two v ...
'' or ''orthogonal curves''. ''Orthogonality'' is also used with various meanings that are often weakly related or not related at all with the mathematical meanings.


Etymology

The word comes from the
Ancient Greek Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek ...
('), meaning "upright", and ('), meaning "angle". The Ancient Greek (') and
Classical Latin Classical Latin is the form of Literary Latin recognized as a Literary language, literary standard language, standard by writers of the late Roman Republic and early Roman Empire. It formed parallel to Vulgar Latin around 75 BC out of Old Latin ...
' originally denoted a
rectangle In Euclidean geometry, Euclidean plane geometry, a rectangle is a Rectilinear polygon, rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that a ...
. Later, they came to mean a right triangle. In the 12th century, the post-classical Latin word ''orthogonalis'' came to mean a right angle or something related to a right angle.


Mathematics


Physics


Optics

In
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
, polarization states are said to be orthogonal when they propagate independently of each other, as in vertical and horizontal linear polarization or right-handed and left-handed circular polarization.


Special relativity

In
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
, a time axis determined by a
rapidity In special relativity, the classical concept of velocity is converted to rapidity to accommodate the limit determined by the speed of light. Velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velo ...
of motion is hyperbolic-orthogonal to a space axis of simultaneous events, also determined by the rapidity. The theory features relativity of simultaneity.


Hyperbolic orthogonality


Quantum mechanics

In
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, a sufficient (but not necessary) condition that two eigenstates of a Hermitian operator, \psi_m and \psi_n , are orthogonal is that they correspond to different eigenvalues. This means, in Dirac notation, that \langle \psi_m , \psi_n \rangle = 0 if \psi_m and \psi_n correspond to different eigenvalues. This follows from the fact that Schrödinger's equation is a Sturm–Liouville equation (in Schrödinger's formulation) or that observables are given by Hermitian operators (in Heisenberg's formulation).


Art

In art, the perspective (imaginary) lines pointing to the vanishing point are referred to as "orthogonal lines". The term "orthogonal line" often has a quite different meaning in the literature of modern art criticism. Many works by painters such as
Piet Mondrian Pieter Cornelis Mondriaan (; 7 March 1872 – 1 February 1944), known after 1911 as Piet Mondrian (, , ), was a Dutch Painting, painter and Theory of art, art theoretician who is regarded as one of the greatest artists of the 20th century. He w ...
and Burgoyne Diller are noted for their exclusive use of "orthogonal lines" — not, however, with reference to perspective, but rather referring to lines that are straight and exclusively horizontal or vertical, forming right angles where they intersect. For example, an essay of the Thyssen-Bornemisza Museum states that " Mondrian ..dedicated his entire oeuvre to the investigation of the balance between orthogonal lines and primary colours."


Computer science

Orthogonality in programming language design is the ability to use various language features in arbitrary combinations with consistent results. This usage was introduced by Van Wijngaarden in the design of
Algol 68 ALGOL 68 (short for ''Algorithmic Language 1968'') is an imperative programming language member of the ALGOL family that was conceived as a successor to the ALGOL 60 language, designed with the goal of a much wider scope of application and ...
:
The number of independent primitive concepts has been minimized in order that the language be easy to describe, to learn, and to implement. On the other hand, these concepts have been applied “orthogonally” in order to maximize the expressive power of the language while trying to avoid deleterious superfluities.
Orthogonality is a system design property which guarantees that modifying the technical effect produced by a component of a system neither creates nor propagates side effects to other components of the system. Typically this is achieved through the separation of concerns and encapsulation, and it is essential for feasible and compact designs of complex systems. The emergent behavior of a system consisting of components should be controlled strictly by formal definitions of its logic and not by side effects resulting from poor integration, i.e., non-orthogonal design of modules and interfaces. Orthogonality reduces testing and development time because it is easier to verify designs that neither cause side effects nor depend on them.


Orthogonal instruction set

An
instruction set In computer science, an instruction set architecture (ISA) is an abstract model that generally defines how software controls the CPU in a computer or a family of computers. A device or program that executes instructions described by that ISA, s ...
is said to be orthogonal if it lacks redundancy (i.e., there is only a single instruction that can be used to accomplish a given task) and is designed such that instructions can use any register in any addressing mode. This terminology results from considering an instruction as a vector whose components are the instruction fields. One field identifies the registers to be operated upon and another specifies the addressing mode. An orthogonal instruction set uniquely encodes all combinations of registers and addressing modes.


Telecommunications

In
telecommunications Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information over a distance using electronic means, typically through cables, radio waves, or other communication technologies. These means of ...
, multiple access schemes are orthogonal when an ideal receiver can completely reject arbitrarily strong unwanted signals from the desired signal using different basis functions. One such scheme is time-division multiple access (TDMA), where the orthogonal basis functions are nonoverlapping rectangular pulses ("time slots").


Orthogonal frequency-division multiplexing

Another scheme is orthogonal frequency-division multiplexing (OFDM), which refers to the use, by a single transmitter, of a set of frequency multiplexed signals with the exact minimum frequency spacing needed to make them orthogonal so that they do not interfere with each other. Well known examples include (a, g, and n) versions of 802.11
Wi-Fi Wi-Fi () is a family of wireless network protocols based on the IEEE 802.11 family of standards, which are commonly used for Wireless LAN, local area networking of devices and Internet access, allowing nearby digital devices to exchange data by ...
; WiMAX;
ITU-T The International Telecommunication Union Telecommunication Standardization Sector (ITU-T) is one of the three Sectors (branches) of the International Telecommunication Union (ITU). It is responsible for coordinating Standardization, standards fo ...
G.hn, DVB-T, the terrestrial digital TV broadcast system used in most of the world outside North America; and DMT (Discrete Multi Tone), the standard form of ADSL. In OFDM, the subcarrier frequencies are chosen so that the subcarriers are orthogonal to each other, meaning that crosstalk between the subchannels is eliminated and intercarrier guard bands are not required. This greatly simplifies the design of both the transmitter and the receiver. In conventional FDM, a separate filter for each subchannel is required.


Statistics, econometrics, and economics

When performing statistical analysis, independent variables that affect a particular
dependent variable A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical functio ...
are said to be orthogonal if they are uncorrelated, since the covariance forms an inner product. In this case the same results are obtained for the effect of any of the independent variables upon the dependent variable, regardless of whether one models the effects of the variables individually with simple regression or simultaneously with multiple regression. If correlation is present, the factors are not orthogonal and different results are obtained by the two methods. This usage arises from the fact that if centered by subtracting the
expected value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informa ...
(the mean), uncorrelated variables are orthogonal in the geometric sense discussed above, both as observed data (i.e., vectors) and as random variables (i.e., density functions). One econometric formalism that is alternative to the maximum likelihood framework, the Generalized Method of Moments, relies on orthogonality conditions. In particular, the Ordinary Least Squares estimator may be easily derived from an orthogonality condition between the explanatory variables and model residuals.


Taxonomy

In
taxonomy image:Hierarchical clustering diagram.png, 280px, Generalized scheme of taxonomy Taxonomy is a practice and science concerned with classification or categorization. Typically, there are two parts to it: the development of an underlying scheme o ...
, an orthogonal classification is one in which no item is a member of more than one group, that is, the classifications are mutually exclusive.


Chemistry and biochemistry

In chemistry and biochemistry, an orthogonal interaction occurs when there are two pairs of substances and each substance can interact with their respective partner, but does not interact with either substance of the other pair. For example, DNA has two orthogonal pairs: cytosine and guanine form a base-pair, and adenine and thymine form another base-pair, but other base-pair combinations are strongly disfavored. As a chemical example, tetrazine reacts with transcyclooctene and azide reacts with cyclooctyne without any cross-reaction, so these are mutually orthogonal reactions, and so, can be performed simultaneously and selectively.


Organic synthesis

In organic synthesis, orthogonal protection is a strategy allowing the deprotection of
functional group In organic chemistry, a functional group is any substituent or moiety (chemistry), moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions r ...
s independently of each other.


Bioorthogonal chemistry


Supramolecular chemistry

In supramolecular chemistry the notion of orthogonality refers to the possibility of two or more supramolecular, often non-covalent, interactions being compatible; reversibly forming without interference from the other.


Analytical chemistry

In analytical chemistry, analyses are "orthogonal" if they make a measurement or identification in completely different ways, thus increasing the reliability of the measurement. Orthogonal testing thus can be viewed as "cross-checking" of results, and the "cross" notion corresponds to the etymologic origin of ''orthogonality''. Orthogonal testing is often required as a part of a new drug application.


System reliability

In the field of system reliability orthogonal redundancy is that form of redundancy where the form of backup device or method is completely different from the prone to error device or method. The failure mode of an orthogonally redundant back-up device or method does not intersect with and is completely different from the failure mode of the device or method in need of redundancy to safeguard the total system against catastrophic failure.


Neuroscience

In neuroscience, a sensory map in the brain which has overlapping stimulus coding (e.g. location and quality) is called an orthogonal map.


Philosophy

In
philosophy Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational an ...
, two topics, authors, or pieces of writing are said to be "orthogonal" to each other when they do not substantively cover what could be considered potentially overlapping or competing claims. Thus, texts in philosophy can either support and complement one another, they can offer competing explanations or systems, or they can be orthogonal to each other in cases where the scope, content, and purpose of the pieces of writing are entirely unrelated.


Gaming

In board games such as
chess Chess is a board game for two players. It is an abstract strategy game that involves Perfect information, no hidden information and no elements of game of chance, chance. It is played on a square chessboard, board consisting of 64 squares arran ...
which feature a grid of squares, 'orthogonal' is used to mean "in the same row/'rank' or column/'file'". This is the counterpart to squares which are "diagonally adjacent". In the ancient Chinese board game Go a player can capture the stones of an opponent by occupying all orthogonally adjacent points.


Law

In law, orthogonality can refer to interests in a proceeding that are not aligned, but also bear no correlation or effect on each other, so as not to create a conflict of interest.


Other examples

Stereo vinyl records encode both the left and right stereo channels in a single groove. The V-shaped groove in the vinyl has walls that are 90 degrees to each other, with variations in each wall separately encoding one of the two analogue channels that make up the stereo signal. The cartridge senses the motion of the stylus following the groove in two orthogonal directions: 45 degrees from vertical to either side.For an illustration, se
YouTube
A pure horizontal motion corresponds to a mono signal, equivalent to a stereo signal in which both channels carry identical (in-phase) signals.


See also

* Orthogonal ligand-protein pair * Orthogonal polyhedron * Up tack


References

{{Reflist, 30em *