HOME

TheInfoList



OR:

In
numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of ...
, order of accuracy quantifies the rate of convergence of a numerical approximation of a differential equation to the exact solution. Consider u, the exact solution to a differential equation in an appropriate
normed space The Ateliers et Chantiers de France (ACF, Workshops and Shipyards of France) was a major shipyard that was established in Dunkirk, France, in 1898. The shipyard boomed in the period before World War I (1914–18), but struggled in the inter-war p ...
(V,, , \ , , ). Consider a numerical approximation u_h, where h is a parameter characterizing the approximation, such as the step size in a finite difference scheme or the diameter of the cells in a
finite element method Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat tran ...
. The numerical solution u_h is said to be nth-order accurate if the error E(h):= , , u-u_h, , is proportional to the step-size h to the nth power: : E(h) = , , u-u_h, , \leq Ch^n where the constant C is independent of h and usually depends on the solution u. Using the
big O notation Big ''O'' notation is a mathematical notation that describes the asymptotic analysis, limiting behavior of a function (mathematics), function when the Argument of a function, argument tends towards a particular value or infinity. Big O is a memb ...
an nth-order accurate numerical method is notated as : , , u-u_h, , = O(h^n) This definition is strictly dependent on the norm used in the space; the choice of such norm is fundamental to estimate the rate of convergence and, in general, all numerical errors correctly. The size of the error of a first-order accurate approximation is directly proportional to h.
Partial differential equations In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how ...
which vary over both time and space are said to be accurate to order n in time and to order m in space.


References

Numerical analysis {{applied-math-stub