Omitted Variable Bias
   HOME

TheInfoList



OR:

In
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, omitted-variable bias (OVB) occurs when a statistical model leaves out one or more relevant variables. The bias results in the model attributing the effect of the missing variables to those that were included. More specifically, OVB is the
bias Bias is a disproportionate weight ''in favor of'' or ''against'' an idea or thing, usually in a way that is inaccurate, closed-minded, prejudicial, or unfair. Biases can be innate or learned. People may develop biases for or against an individ ...
that appears in the estimates of
parameter A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
s in a regression analysis, when the assumed
specification A specification often refers to a set of documented requirements to be satisfied by a material, design, product, or service. A specification is often a type of technical standard. There are different types of technical or engineering specificati ...
is incorrect in that it omits an independent variable that is a determinant of the dependent variable and correlated with one or more of the included independent variables.


In linear regression


Intuition

Suppose the true cause-and-effect relationship is given by: :y=a+bx+cz+u with parameters ''a, b, c'', dependent variable ''y'', independent variables ''x'' and ''z'', and error term ''u''. We wish to know the effect of ''x'' itself upon ''y'' (that is, we wish to obtain an estimate of ''b''). Two conditions must hold true for omitted-variable bias to exist in
linear regression In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ...
: * the omitted variable must be a determinant of the dependent variable (i.e., its true regression coefficient must not be zero); and * the omitted variable must be correlated with an independent variable specified in the regression (i.e., cov(''z'',''x'') must not equal zero). Suppose we omit ''z'' from the regression, and suppose the relation between ''x'' and ''z'' is given by :z=d+fx+e with parameters ''d'', ''f'' and error term ''e''. Substituting the second equation into the first gives :y=(a+cd)+(b+cf)x+(u+ce). If a regression of ''y'' is conducted upon ''x'' only, this last equation is what is estimated, and the regression coefficient on ''x'' is actually an estimate of (''b'' + ''cf'' ), giving not simply an estimate of the desired direct effect of ''x'' upon ''y'' (which is ''b''), but rather of its sum with the indirect effect (the effect ''f'' of ''x'' on ''z'' times the effect ''c'' of ''z'' on ''y''). Thus by omitting the variable ''z'' from the regression, we have estimated the
total derivative In mathematics, the total derivative of a function at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with res ...
of ''y'' with respect to ''x'' rather than its
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...
with respect to ''x''. These differ if both ''c'' and ''f'' are non-zero. The direction and extent of the bias are both contained in ''cf'', since the effect sought is ''b'' but the regression estimates ''b+cf''. The extent of the bias is the absolute value of ''cf'', and the direction of bias is upward (toward a more positive or less negative value) if ''cf'' > 0 (if the direction of correlation between ''y'' and ''z'' is the same as that between ''x'' and ''z''), and it is downward otherwise.


Detailed analysis

As an example, consider a
linear model In statistics, the term linear model refers to any model which assumes linearity in the system. The most common occurrence is in connection with regression models and the term is often taken as synonymous with linear regression model. However, t ...
of the form : y_i = x_i \beta + z_i \delta + u_i,\qquad i = 1,\dots,n where * ''x''''i'' is a 1 × ''p'' row vector of values of ''p''
independent variable A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function ...
s observed at time ''i'' or for the ''i'' th study participant; * ''β'' is a ''p'' × 1 column vector of unobservable parameters (the response coefficients of the dependent variable to each of the ''p'' independent variables in ''x''''i'') to be estimated; * ''z''''i'' is a scalar and is the value of another independent variable that is observed at time ''i'' or for the ''i'' th study participant; * ''δ'' is a scalar and is an unobservable parameter (the response coefficient of the dependent variable to ''z''''i'') to be estimated; * ''u''''i'' is the unobservable
error term In mathematics and statistics, an error term is an additive type of error. In writing, an error term is an instance of faulty language or grammar. Common examples include: * errors and residuals in statistics, e.g. in linear regression * the error ...
occurring at time ''i'' or for the ''i'' th study participant; it is an unobserved realization of a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
having
expected value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informa ...
 0 (conditionally on ''x''''i'' and ''z''''i''); * ''y''''i'' is the observation of the
dependent variable A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical functio ...
at time ''i'' or for the ''i'' th study participant. We collect the observations of all variables subscripted ''i'' = 1, ..., ''n'', and stack them one below another, to obtain the
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
''X'' and the vectors ''Y'', ''Z'', and ''U'': : X = \left \begin x_1 \\ \vdots \\ x_n \end \right\in \mathbb^, and : Y = \left \begin y_1 \\ \vdots \\ y_n \end \right\quad Z = \left \begin z_1 \\ \vdots \\ z_n \end \right\quad U = \left \begin u_1 \\ \vdots \\ u_n \end \right\in \mathbb^. If the independent variable ''z'' is omitted from the regression, then the estimated values of the response parameters of the other independent variables will be given by the usual
least squares The method of least squares is a mathematical optimization technique that aims to determine the best fit function by minimizing the sum of the squares of the differences between the observed values and the predicted values of the model. The me ...
calculation, :\widehat = (X'X)^X'Y\, (where the "prime" notation means the
transpose In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other ...
of a matrix and the -1 superscript is
matrix inversion In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an ...
). Substituting for ''Y'' based on the assumed linear model, : \begin \widehat & = (X'X)^X'(X\beta+Z\delta+U) \\ & =(X'X)^X'X\beta + (X'X)^X'Z\delta + (X'X)^X'U \\ & =\beta + (X'X)^X'Z\delta + (X'X)^X'U. \end On taking expectations, the contribution of the final term is zero; this follows from the assumption that ''U'' is uncorrelated with the regressors ''X''. On simplifying the remaining terms: : \begin E \widehat \mid X & = \beta + (X'X)^E X'Z \mid X delta \\ & = \beta + \text. \end The second term after the equal sign is the omitted-variable bias in this case, which is non-zero if the omitted variable ''z'' is correlated with any of the included variables in the matrix ''X'' (that is, if ''X′Z'' does not equal a vector of zeroes). Note that the bias is equal to the weighted portion of ''z''''i'' which is "explained" by ''x''''i''.


Effect in ordinary least squares

The
Gauss–Markov theorem In statistics, the Gauss–Markov theorem (or simply Gauss theorem for some authors) states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in ...
states that regression models which fulfill the classical linear regression model assumptions provide the most efficient, linear and
unbiased Bias is a disproportionate weight ''in favor of'' or ''against'' an idea or thing, usually in a way that is inaccurate, closed-minded, prejudicial, or unfair. Biases can be innate or learned. People may develop biases for or against an individ ...
estimators. In
ordinary least squares In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression In statistics, linear regression is a statistical model, model that estimates the relationship ...
, the relevant assumption of the classical linear regression model is that the error term is uncorrelated with the regressors. The presence of omitted-variable bias violates this particular assumption. The violation causes the OLS estimator to be biased and
inconsistent In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences o ...
. The direction of the bias depends on the estimators as well as the
covariance In probability theory and statistics, covariance is a measure of the joint variability of two random variables. The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables. If greater values of one ...
between the regressors and the omitted variables. A positive covariance of the omitted variable with both a regressor and the dependent variable will lead the OLS estimate of the included regressor's coefficient to be greater than the true value of that coefficient. This effect can be seen by taking the expectation of the parameter, as shown in the previous section.


See also

*
Confounding variable In causal inference, a confounder is a variable that influences both the dependent variable and independent variable, causing a spurious association. Confounding is a causal concept, and as such, cannot be described in terms of correlati ...


References

* * * * {{Biases Regression analysis Experimental bias