Octic Reciprocity
   HOME

TheInfoList



OR:

In
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, octic reciprocity is a
reciprocity law In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials f(x) with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an ir ...
relating the residues of 8th powers
modulo In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , mo ...
primes, analogous to the
law of quadratic reciprocity In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard st ...
,
cubic reciprocity Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence ''x''3 ≡ ''p'' (mod ''q'') is solvable; the word "reciprocity" comes from the form of ...
, and
quartic reciprocity Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence ''x''4 ≡ ''p'' (mod ''q'') is solvable; the word "reciprocity" comes from the form ...
. There is a rational reciprocity law for 8th powers, due to Williams. Define the symbol \left(\frac xp\right)_k to be +1 if ''x'' is a ''k''-th power modulo the prime ''p'' and -1 otherwise. Let ''p'' and ''q'' be distinct primes congruent to 1 modulo 8, such that \left(\frac pq\right)_4 = \left(\frac qp\right)_4 = +1 . Let ''p'' = ''a''2 + ''b''2 = ''c''2 + 2''d''2 and ''q'' = ''A''2 + ''B''2 = ''C''2 + 2''D''2, with ''aA'' odd. Then : \left(\frac pq\right)_8 \left(\frac qp\right)_8 = \left(\fracq\right)_4 \left(\fracq\right)_2 \ .


See also

*
Artin reciprocity The Artin reciprocity law, which was established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory. The term " reciprocity law" refers to a long li ...
*
Eisenstein reciprocity In algebraic number theory Eisenstein's reciprocity law is a reciprocity law that extends the law of quadratic reciprocity and the cubic reciprocity law to residues of higher powers. It is one of the earliest and simplest of the higher reciprocity ...


References

* * Theorems in algebraic number theory {{numtheory-stub