HOME

TheInfoList



OR:

Norton's dome is a
thought experiment A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most anci ...
that exhibits a non-deterministic system within the bounds of
Newtonian mechanics Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motio ...
. It was devised by John D. Norton in 2003. It is a special limiting case of a more general class of examples from 1997 due to Sanjay Bhat and Dennis Bernstein. The Norton's dome problem can be regarded as a problem in physics, mathematics, or philosophy.


Description

The model consists of an idealized particle initially sitting motionless at the
apex The apex is the highest point of something. The word may also refer to: Arts and media Fictional entities * Apex (comics), a teenaged super villainess in the Marvel Universe * Ape-X, a super-intelligent ape in the Squadron Supreme universe *Apex ...
of an idealized radially symmetrical frictionless dome described by the equation :h = r^\;;\;0\leq r<\frac, where ''h'' is the vertical displacement from the top of the dome to a point on the dome, ''r'' is the
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection ...
distance from the dome's apex to that point (in other words, a radial coordinate ''r'' is "inscribed" on the surface), ''g'' is acceleration due to gravity and ''b'' is a proportionality constant. From
Newton's second law Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
, the tangent component of the acceleration on a point mass resting frictionlessly on the surface is a_=b^2\sqrt r.


Solutions to the equations of motion

Norton shows that there are two classes of mathematical solutions to this equation. In the first, the particle stays sitting at the apex of the dome forever. In the second, the particle sits at the apex of the dome for a while, and then after an arbitrary period of time starts to slide down the dome in an arbitrary direction. The apparent paradox in this second case is that this would seem to occur for no discernible reason, and without any radial force being exerted on it by any other entity, apparently contrary to both physical intuition and normal intuitive concepts of cause and effect, yet the motion is still entirely consistent with the mathematics of
Newton's laws of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
. To see that all these equations of motion are physically possible solutions, it's helpful to use the
time reversibility A mathematical or physical process is time-reversible if the dynamics of the process remain well-defined when the sequence of time-states is reversed. A deterministic process is time-reversible if the time-reversed process satisfies the same dyn ...
of Newtonian mechanics. It is possible to roll a ball up the dome in such a way that it reaches the apex in finite time and with zero energy, and stops there. By time-reversal, it is a valid solution for the ball to rest at the top for a while and then roll down in any one direction. However, the same argument applied to the usual kinds of domes (e.g., a hemisphere) fails, because a ball launched with just the right energy to reach the top and stay there would actually take infinite time to do so.


Resolutions to the paradox

While many criticisms have been made of Norton's thought experiment, such as it being a violation of the principle of
Lipschitz continuity In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there ex ...
(the force that appears in Newton's second law is not a Lipschitz continuous function of the particle's trajectory -- this allows evasion of the local uniqueness theorem for solutions of ordinary differential equations), or in violation of the principles of physical symmetry, or that it is somehow in some other way "unphysical", there is no consensus among its critics as to why they regard it as invalid.


Indeterminate derivatives

A simple criticism of the thought experiment is as follows, however: The entire argument hinges on the behavior of the particle at the point r=0, during a time period where it has zero velocity. Traditional Newtonian mechanics would say that the position of the particle would, infinitesimally be :h = \frac(\Delta t)^2 , for some small time \Delta t, but because the second derivative of the surface does not exist at this point, the force is indeterminate. It's therefore completely sensible that the infinitesimal motion of the object is also indeterminate.


See also

*
Indeterminism Indeterminism is the idea that events (or certain events, or events of certain types) are not caused, or do not cause deterministically. It is the opposite of determinism and related to chance. It is highly relevant to the philosophical prob ...
*
Spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or t ...


References

{{reflist, 30em


External links


John Norton's webpage for the Norton dome problem
Classical mechanics Physical paradoxes Thought experiments Determinism Thought experiments in physics