Nonhypotenuse number
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a nonhypotenuse number is a
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
whose square ''cannot'' be written as the sum of two nonzero squares. The name stems from the fact that an edge of length equal to a nonhypotenuse number ''cannot'' form the
hypotenuse In geometry, a hypotenuse is the side of a right triangle opposite to the right angle. It is the longest side of any such triangle; the two other shorter sides of such a triangle are called '' catheti'' or ''legs''. Every rectangle can be divided ...
of a right angle triangle with integer sides. The numbers 1, 2, 3, and 4 are all nonhypotenuse numbers. The number 5, however, is ''not'' a nonhypotenuse number as 5^2 = 3^2 + 4^2. The first fifty nonhypotenuse numbers are: :1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 23, 24, 27, 28, 31, 32, 33, 36, 38, 42, 43, 44, 46, 47, 48, 49, 54, 56, 57, 59, 62, 63, 64, 66, 67, 69, 71, 72, 76, 77, 79, 81, 83, 84 Although nonhypotenuse numbers are common among small integers, they become more-and-more sparse for larger numbers. Yet, there are infinitely many nonhypotenuse numbers, and the number of nonhypotenuse numbers not exceeding a value ''x'' scales asymptotically with ''x''/. The nonhypotenuse numbers are those numbers that have no
prime factor A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s of the form 4''k''+1. Equivalently, they are the number that cannot be expressed in the form K(m^2+n^2) where ''K'', ''m'', and ''n'' are all positive integers. A number whose prime factors are not of the form 4''k''+1 cannot be the hypotenuse of a ''primitive'' integer right triangle (one for which the sides do not have a nontrivial common divisor), but may still be the hypotenuse of a non-primitive triangle. The nonhypotenuse numbers have been applied to prove the existence of addition chains that compute the first n square numbers using only n+o(n) additions.


See also

*
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
* Landau-Ramanujan constant *
Fermat's theorem on sums of two squares In additive number theory, Pierre de Fermat, Fermat's theorem on sums of two squares states that an Even and odd numbers, odd prime number, prime ''p'' can be expressed as: :p = x^2 + y^2, with ''x'' and ''y'' integers, if and only if :p \equiv ...


References


External links

* * {{Classes of natural numbers Integer sequences