HOME

TheInfoList



OR:

In
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrica ...
, the Nisnevich topology, sometimes called the completely decomposed topology, is a
Grothendieck topology In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is ca ...
on the category of
scheme A scheme is a systematic plan for the implementation of a certain idea. Scheme or schemer may refer to: Arts and entertainment * ''The Scheme'' (TV series), a BBC Scotland documentary series * The Scheme (band), an English pop band * ''The Schem ...
s which has been used in
algebraic K-theory Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense o ...
, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.


Definition

A morphism of schemes f:Y \to X is called a Nisnevich morphism if it is an étale morphism such that for every (possibly non-closed) point ''x'' ∈ ''X'', there exists a point ''y'' ∈ ''Y'' in the fiber such that the induced map of residue fields ''k''(''x'') → ''k''(''y'') is an isomorphism. Equivalently, ''f'' must be flat, unramified, locally of finite presentation, and for every point ''x'' ∈ ''X'', there must exist a point ''y'' in the fiber such that ''k''(''x'') → ''k''(''y'') is an isomorphism. A family of morphisms is a Nisnevich cover if each morphism in the family is étale and for every (possibly non-closed) point ''x'' ∈ ''X'', there exists ''α'' and a point ''y'' ∈ ''X''α s.t. ''u''α(''y'') = ''x'' and the induced map of residue fields ''k''(''x'') → ''k''(''y'') is an isomorphism. If the family is finite, this is equivalent to the morphism \coprod u_\alpha from \coprod X_\alpha to ''X'' being a Nisnevich morphism. The Nisnevich covers are the covering families of a pretopology on the category of schemes and morphisms of schemes. This generates a topology called the Nisnevich topology. The category of schemes with the Nisnevich topology is notated ''Nis''. The small Nisnevich site of ''X'' has as underlying category the same as the small étale site, that is to say, objects are schemes ''U'' with a fixed étale morphism ''U'' → ''X'' and the morphisms are morphisms of schemes compatible with the fixed maps to ''X''. Admissible coverings are Nisnevich morphisms. The big Nisnevich site of ''X'' has as underlying category schemes with a fixed map to ''X'' and morphisms the morphisms of ''X''-schemes. The topology is the one given by Nisnevich morphisms. The Nisnevich topology has several variants which are adapted to studying singular varieties. Covers in these topologies include resolutions of singularities or weaker forms of resolution. * The cdh topology allows proper birational morphisms as coverings. * The h topology allows De Jong's alterations as coverings. * The l′ topology allows morphisms as in the conclusion of Gabber's local uniformization theorem. The cdh and l′ topologies are incomparable with the
étale topology In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale to ...
, and the h topology is finer than the étale topology.


Equivalent conditions for a Nisnevich cover

Another equivalent conditionpg 21 for a family of morphisms \_ of schemes to be a Nisnevich covering is if # Every p_\alpha is etale # The coproduct of the induced maps p_\alpha(k): U_\alpha(k) \to X(k) on their associated functors gives a surjective map of sets for a field k. There is an alternative characterization using finite sequences of finitely presented closed subschemes
\varnothing \subseteq Z_n \subseteq Z_ \subseteq \cdots \subseteq Z_1 \subseteq Z_0 = X
where the second condition is replaced with the hypothesis that
\coprod_ p_\alpha^(Z_m - Z_) \to Z_m - Z_
admits a section. Notice that when evaluating these morphisms on S-points, this implies the map is a surjection. Conversely, taking the trivial sequence Z_0 = X gives the result in the opposite direction.


Motivation

One of the key motivations for introducing the Nisnevich topology in motivic cohomology is the fact that a Zariski open cover \pi: U \to X does not yield a resolution of Zariski sheaves
\cdots \to \mathbf_(U\times_XU) \to \mathbf_(U) \to \mathbf_(X) \to 0
where
\mathbf_(Y)(Z) := \text_(Z,Y)
is the representable functor over the category of presheaves with transfers. For the Nisnevich topology, the local rings are Henselian, and a finite cover of a Henselian ring is given by a product of Henselian rings, showing exactness.


Local rings in the Nisnevich topology

If ''x'' is a point of a scheme ''X'', then the local ring of ''x'' in the Nisnevich topology is the Henselization of the local ring of ''x'' in the Zariski topology. This differs from the Etale topology where the local rings are ''strict'' henselizations. One of the important points between the two cases can be seen when looking at a local ring (R,\mathfrak) with residue field \kappa. In this case, the residue fields of the Henselization and strict Henselization differ
\begin (R,\mathfrak)^h &\rightsquigarrow \kappa \\ (R,\mathfrak)^ &\rightsquigarrow \kappa^ \end
so the residue field of the strict Henselization gives the separable closure of the original residue field \kappa.


Examples of Nisnevich Covering

Consider the étale cover given by : \text(\mathbb ,t,t^(x^2 - t)) \to \text(\mathbb ,t^ If we look at the associated morphism of residue fields for the generic point of the base, we see that this is a degree 2 extension : \mathbb(t) \to \frac This implies that this étale cover is not Nisnevich. We can add the étale morphism \mathbb^1 - \ \to \mathbb^1 - \ to get a Nisnevich cover since there is an isomorphism of points for the generic point of \mathbb^1-\.


Conditional covering

If we take \mathbb^1 as a scheme over a field k, then a coveringpg 21 given by
\begin i: \mathbb^1 - \ \hookrightarrow \mathbb^1 \\ f: \mathbb^1 - \ \to \mathbb^1 \end
where i is the inclusion and f(x) = x^k, then this covering is Nisnevich if and only if x^k = a has a solution over k. Otherwise, the covering cannot be a surjection on k-points. In this case, the covering is only an Etale covering.


Zariski coverings

Every Zariski coveringpg 21 is Nisnevich but the converse doesn't hold in general. This can be easily proven using any of the definitions since the residue fields will always be an isomorphism regardless of the Zariski cover, and by definition a Zariski cover will give a surjection on points. In addition, Zariski inclusions are always Etale morphisms.


Applications

Nisnevich introduced his topology to provide a cohomological interpretation of the class set of an affine group scheme, which was originally defined in adelic terms. He used it to partially prove a conjecture of Alexander Grothendieck and Jean-Pierre Serre which states that a rationally trivial torsor under a reductive group scheme over an integral regular Noetherian base scheme is locally trivial in the Zariski topology. One of the key properties of the Nisnevich topology is the existence of a descent spectral sequence. Let ''X'' be a Noetherian scheme of finite Krull dimension, and let ''G''''n''(''X'') be the Quillen K-groups of the category of coherent sheaves on ''X''. If \tilde G_n^(X) is the sheafification of these groups with respect to the Nisnevich topology, there is a convergent spectral sequence :E^_2 = H^p(X_\text, \tilde G_q^) \Rightarrow G_(X) for , , and . If \ell is a prime number not equal to the characteristic of ''X'', then there is an analogous convergent spectral sequence for K-groups with coefficients in \mathbf/\ell\mathbf. The Nisnevich topology has also found important applications in
algebraic K-theory Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense o ...
, A¹ homotopy theory and the theory of motives.


See also

*
Presheaf with transfers In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite corre ...
* Mixed motives (math) * A¹ homotopy theory * Henselian ring


References

* , available a
Nisnevich's website
* {{citation , first = Marc , last = Levine , year = 2008 , title = Motivic Homotopy Theory , url = http://www.math.unam.mx/javier/levine.pdf Algebraic geometry Topos theory