Nilradical of a ring
   HOME

TheInfoList



OR:

In
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, the nilradical of a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
is the ideal consisting of the
nilpotent element In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister idempotent, was introduced by Benjamin Peirce i ...
s: :\mathfrak_R = \lbrace f \in R \mid f^m=0 \text m\in\mathbb_\rbrace. It is thus the radical of the zero ideal. If the nilradical is the zero ideal, the ring is called a reduced ring. The nilradical of a commutative ring is the intersection of all
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
s. In the
non-commutative ring In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not ...
case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways; see the article Radical of a ring for more on this. The
nilradical of a Lie algebra In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible. The nilradical \mathfrak(\mathfrak g) of a finite-dimensional Lie algebra \mathfrak is its maximal nilpotent ideal, which exists because the sum of ...
is similarly defined for
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
s.


Commutative rings

The nilradical of a commutative ring is the set of all
nilpotent element In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister idempotent, was introduced by Benjamin Peirce i ...
s in the ring, or equivalently the radical of the zero ideal. This is an ideal because the sum of any two nilpotent elements is nilpotent (by the
binomial formula In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, the power expands into a polynomial with terms of the form , where the exponents and a ...
), and the product of any element with a nilpotent element is nilpotent (by commutativity). It can also be characterized as the
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of all the
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
s of the ring (in fact, it is the intersection of all minimal prime ideals). A ring is called reduced if it has no nonzero nilpotent. Thus, a ring is reduced
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
its nilradical is zero. If ''R'' is an arbitrary commutative ring, then the quotient of it by the nilradical is a reduced ring and is denoted by R_. Since every
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
is a prime ideal, the Jacobson radical — which is the intersection of maximal ideals — must contain the nilradical. A ring ''R'' is called a Jacobson ring if the nilradical and Jacobson radical of ''R''/''P'' coincide for all prime ideals ''P'' of ''R''. An
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are ...
is Jacobson, and its nilradical is the maximal
nilpotent ideal In mathematics, more specifically ring theory, an ideal ''I'' of a ring ''R'' is said to be a nilpotent ideal if there exists a natural number ''k'' such that ''I'k'' = 0. By ''I'k'', it is meant the additive subgroup generated by the set o ...
of the ring. In general, if the nilradical is finitely generated (e.g., the ring is
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ...
), then it is
nilpotent In mathematics, an element x of a ring (mathematics), ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister Idempotent (ring theory), idem ...
.


Noncommutative rings

For noncommutative rings, there are several analogues of the nilradical. The lower nilradical (or Baer–McCoy radical, or prime radical) is the analogue of the radical of the zero ideal and is defined as the intersection of the prime ideals of the ring. The analogue of the set of all nilpotent elements is the upper nilradical and is defined as the ideal generated by all nil ideals of the ring, which is itself a nil ideal. The set of all nilpotent elements itself need not be an ideal (or even a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
), so the upper nilradical can be much smaller than this set. The Levitzki radical is in between and is defined as the largest locally nilpotent ideal. As in the commutative case, when the ring is Artinian, the Levitzki radical is nilpotent and so is the unique largest nilpotent ideal. Indeed, if the ring is merely Noetherian, then the lower, upper, and Levitzki radical are nilpotent and coincide, allowing the nilradical of any Noetherian ring to be defined as the unique largest (left, right, or two-sided) nilpotent ideal of the ring.


References

* Eisenbud, David, "Commutative Algebra with a View Toward Algebraic Geometry", Graduate Texts in Mathematics, 150, Springer-Verlag, 1995, . * Commutative algebra Ideals (ring theory)


Notes

{{reflist, group=Note