HOME

TheInfoList



OR:

The first reflecting telescope built by Sir
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the grea ...
in 1668 is a landmark in the
history of telescopes The history of the telescope can be traced to before the invention of the earliest known telescope, which appeared in 1608 in the Netherlands, when a patent was submitted by Hans Lippershey, an eyeglass maker. Although Lippershey did not recei ...
, being the first known successful
reflecting telescope A reflecting telescope (also called a reflector) is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternati ...
. It was the prototype for a design that later came to be called the
Newtonian telescope The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. New ...
. There were some early prototypes and also modern replicas of this design.


Description

Isaac Newton built his reflecting telescope as a proof for his theory that
white White is the lightest color and is achromatic (having no hue). It is the color of objects such as snow, chalk, and milk, and is the opposite of black. White objects fully reflect and scatter all the visible wavelengths of light. White on ...
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahe ...
is composed of a
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of colours. He had concluded that the lens of any
refracting telescope A refracting telescope (also called a refractor) is a type of optical telescope that uses a lens as its objective to form an image (also referred to a dioptric telescope). The refracting telescope design was originally used in spyglasses and a ...
would suffer from the
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns *Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variatio ...
of light into colours (
chromatic aberration In optics, chromatic aberration (CA), also called chromatic distortion and spherochromatism, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wav ...
). The telescope he constructed used mirrors as the
objective Objective may refer to: * Objective (optics), an element in a camera or microscope * ''The Objective'', a 2008 science fiction horror film * Objective pronoun, a personal pronoun that is used as a grammatical object * Objective Productions, a Brit ...
which bypass that problem. To create the
primary mirror A primary mirror (or primary) is the principal light-gathering surface (the objective) of a reflecting telescope. Description The primary mirror of a reflecting telescope is a spherical or parabolic shaped disks of polished reflective metal ...
Newton used a custom composition of metal consisting of six parts copper to two parts
tin Tin is a chemical element with the symbol Sn (from la, stannum) and atomic number 50. Tin is a silvery-coloured metal. Tin is soft enough to be cut with little force and a bar of tin can be bent by hand with little effort. When bent, t ...
, an early composition of
speculum metal Speculum metal is a mixture of around two-thirds copper and one-third tin, making a white brittle alloy that can be polished to make a highly reflective surface. It was used historically to make different kinds of mirrors from personal grooming ...
. He devised means for shaping and grinding the mirror and may have been the first to use a pitch lap to polish the optical surface. He chose a spherical shape for his mirror instead of a parabola to simplify construction: he had satisfied himself that the chromatic, and not the spherical aberration, formed the chief faults of
refracting telescope A refracting telescope (also called a refractor) is a type of optical telescope that uses a lens as its objective to form an image (also referred to a dioptric telescope). The refracting telescope design was originally used in spyglasses and a ...
s. He added to his reflector what is the hallmark of the design of a ''"Newtonian telescope"'', a secondary "diagonal" mirror near the primary mirror's focus to reflect the image at 90° angle to an
eyepiece An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through the device. Th ...
mounted on the side of the telescope. This unique addition allowed the image to be viewed with minimal obstruction of the objective mirror. He also made all the tube,
mount Mount is often used as part of the name of specific mountains, e.g. Mount Everest. Mount or Mounts may also refer to: Places * Mount, Cornwall, a village in Warleggan parish, England * Mount, Perranzabuloe, a hamlet in Perranzabuloe parish, ...
, and fittings. Newton described his invention as:
"The diameter of the sphere to which the Metal was ground concave was about 25 English Inches, and by consequence the length of the Instrument about six Inches and a quarter. The Eye-glass was Plano-convex, and the diameter of the Sphere to which the convex side was ground was about 1/5 of an Inch, or a little less, and by consequence it magnified between 30 and 40 times. By another way of measuring I found it magnified 35 times. The concave Metal bore an Aperture of an Inch and a third part, but the Aperture was limited not by an Opake Circle, covering the limb of the Metal round about, but be an opake Circle, placed between the Eyeglass and the Eye, and perforated in the middle with a little round hole for the Rays to pass through to the Eye. For this Circle being placed here, stopp'd much of the erroneous Light, which other wise would have disturbed the Vision. By comparing it with a pretty good Perspective of four Feet in length, made with a concave Eye-glass, I could read at a greater distance with my own Instrument than with the Glass. Yet Objects appeared much darker in it than in the Glass, and that partly because more Light was lost by Reflexion in the Metal, than by Refraction in the Glass, and partly because my Instrument was overcharged. Had it magnified but 30 or 25 times, it would have made the Object appear more brisk and pleasant" ... "The object-metal was two inches broad, and about one-third part of an inch thick, to keep it from bending. I had two of these metals, and when I had polished them both I tried which was best; and ground the other again, to see if I could make it better, than that which I kept."
Newton describes a telescope with an
objective Objective may refer to: * Objective (optics), an element in a camera or microscope * ''The Objective'', a 2008 science fiction horror film * Objective pronoun, a personal pronoun that is used as a grammatical object * Objective Productions, a Brit ...
concave primary mirror diameter of 2 inches (50 mm) 0.3 of an inch thick, ground to fit a sphere that was 25 inches in diameter giving it a radius of 12.5 inches and a focal length of 6.25 inches (158 mm). The mirror was aperture reduced to an effective aperture of 1.3 inches by placing a disk with a hole in it between the observer's eye and the eyepiece. The telescope had a flat diagonal secondary mirror bouncing the light at a 90° angle to a Plano-convex
eyepiece An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through the device. Th ...
with a probable focal length of 4.5mm yielding his observed 35 times magnification. Newton said the telescope was 6.25 inches long; this matches the length of the instrument pictured in his monograph "Opticks". It appears that the second telescope, which was presented to the Royal Society has a longer focal length as it is significantly longer than the first one shown in his illustration and described in "Opticks". Newton completed his first reflecting telescope in late 1668 and first wrote about it in a February 23, 1669 letter to
Henry Oldenburg Henry Oldenburg (also Henry Oldenbourg) FRS (c. 1618 as Heinrich Oldenburg – 5 September 1677), was a German theologian, diplomat, and natural philosopher, known as one of the creators of modern scientific peer review. He was one of the fo ...
(Secretary of the
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
).". Newton found that he could see the four
Galilean moons The Galilean moons (), or Galilean satellites, are the four largest moons of Jupiter: Io, Europa, Ganymede, and Callisto. They were first seen by Galileo Galilei in December 1609 or January 1610, and recognized by him as satellites of Jupite ...
of
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth th ...
and the crescent phase of the planet Venus with his new little telescope. Newton's friend
Isaac Barrow Isaac Barrow (October 1630 – 4 May 1677) was an English Christian theologian and mathematician who is generally given credit for his early role in the development of infinitesimal calculus; in particular, for proof of the fundamental theorem ...
showed the telescope to small group from the
Royal Society of London The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, r ...
at the end of 1671. They were so impressed with it they demonstrated it for Charles II in January 1672. This telescope remained in the repository of the Royal Society until it disintegrated and then disappeared from their records. The last reference to it was in 1731 saying that only two mirrors remained of it. The practical potential of Newton's first telescope was made more clear by the end of the 18th century, when the largest reflector had grown to nearly 50 inches aperture (126 cm) while the largest achromatic lens objective was not more than about 5 inches (13 cm). There has been some lack of clarity over the early telescopes that Newton built, but it is now clear that his first telescope was a prototype that he constructed in 1668. This was seen only by a few friends at Cambridge and very little is known of it. This prototype had a mirror a little over an inch in diameter, probably 1.3 inches, and around 6 inches in length. Newton seldom referred to this prototype in later years and so his second scope is often called his first. Newton's second telescope was made in 1671; it had a mirror of 2 inches diameter and a focal length of between 6.25" and 6.3". He made two mirrors and chose the best one for the telescope. He did not keep this telescope long, but presented it to the Royal Society for examination. An account of this telescope just after its presentation in December 1671 described it as being about 7 inches long and about 2.25 inches in diameter. The image was viewed through a hole in the side of the tube "about the size of a great pins head". The tube was one piece and the mirror was moved up from the bottom in order to focus it. It was mounted on a ball and socket mount.An account of the Royal Society's Newton Telescope, A. Rupert Hall and A.D.C. Simpson Notes Rec. R. Soc. Lond. 1996 50 Page 4 This second telescope stayed with the society and by 1731 it had disintegrated to the point of only the two metal mirrors remaining. It then subsequently disappeared. It is certain that this is not the telescope that the Royal Society now hold in their possession as this mirror contained silver and the third telescope mirror contains no silver but has the addition of arsenic. This was something which Newton proposed as an improvement on his second telescope mirror as he found that the metal was too soft due to the silver. Newton's third telescope was built in 1671–1672 by Newton and his "chamber fellow" at Trinity College John Wickins. He reported that Wickins did a better job of figuring the mirror than he had done on his second telescope. This is the telescope that he had by him when he was writing Opticks. The telescope appeared some time later in the shop of Heath and Wing instrument makers along with an instrument of Newtons belonging to Edmond Halley. It is most likely that the telescope had passed to Halley and then to Heath and Wing. This third telescope had the mirror damaged in 1694 by Newton while trying to clean it. It is thought that the mirror was later refigured by restorers accounting for its plugged eyepiece hole at an appropriate distance for a 6.25 inch focal length mirror and the new eyepiece position for the current mirror focal length of 8.5 inches. The current brass eyepiece is not original and was added later. This telescope was restored by Heath and Wing and presented to the Royal Society in 1766 as the telescope that Newton had made. At a later date a plaque was added to this telescope with the incorrect inscription claiming that it was his first telescope and made in 1671. This telescope probably includes the original mirrors, reground, part of the original base, the original support bar and possibly the original tube or parts of it.


Specifications

;For the 2-inch mirror reflector *Reflectorcustom
speculum metal Speculum metal is a mixture of around two-thirds copper and one-third tin, making a white brittle alloy that can be polished to make a highly reflective surface. It was used historically to make different kinds of mirrors from personal grooming ...
composition *Optical
mirror diameter A mirror or looking glass is an object that Reflection (physics), reflects an image. Light that bounces off a mirror will show an image of whatever is in front of it, when focused through the lens of the eye or a camera. Mirrors reverse the ...
2 inches (50 mm) *Optical stopped down aperture 1.3 inches (33 mm) *Optical
focal length The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative foca ...
6.25 inches (158 mm) *Optical effective (stopped down) F-number f/4.78 *Optical bare mirror F-number f/3.16 *Optical eyepiece focal length0.17 inches (4.5 mm)


Replicas

Two replicas were made in the 1960s from the original, one for the Queen and another for European Northern Observatory at La Palma. Another replica was made in 1984 for the chief designer of the William Herschel Telescope. The 1984 replica ended up in the collection of the National Maritime Museum by the early 21st century.


See also

*
Isaac Newton Telescope The Isaac Newton Telescope or INT is a 2.54 m (100 in) optical telescope run by the Isaac Newton Group of Telescopes at Roque de los Muchachos Observatory on La Palma in the Canary Islands since 1984. Originally the INT was situated at Her ...
, a 2.5m Telescope named for Isaac Newton, completed in 1967 *
List of largest optical telescopes in the 18th century List of largest optical telescopes in the 18th century, are listings of what were, for the time period of the 18th century, large optical telescopes. The list includes various refractor and reflector that were active some time between about 1699 t ...
*
List of largest optical telescopes in the British Isles List of largest optical telescopes in Ireland and the United Kingdom is a list of the largest optical telescopes in the British Isles, including in the United Kingdom and Ireland. Some of the most famous telescopes would be Herschel's reflec ...
*
James Gregory (mathematician) James Gregory FRS (November 1638 – October 1675) was a Scottish mathematician and astronomer. His surname is sometimes spelt as Gregorie, the original Scottish spelling. He described an early practical design for the reflecting telescope – th ...
&
Gregorian telescope The Gregorian telescope is a type of reflecting telescope designed by Scottish mathematician and astronomer James Gregory in the 17th century, and first built in 1673 by Robert Hooke. James Gregory was a contemporary of Isaac Newton. Both often ...


References

* Smith, Warren J., ''Modern Optical Engineering'', McGraw-Hill Inc., 1966, p. 400


External links


Newton's ReflectorNewton's TIMELINE
{{DEFAULTSORT:Newton's Reflector Optical telescopes Isaac Newton