HOME

TheInfoList



OR:

The atmospheric engine was invented by
Thomas Newcomen Thomas Newcomen (; February 1664 – 5 August 1729) was an English inventor who created the atmospheric engine, the first practical fuel-burning engine in 1712. He was an ironmonger by trade and a Baptist lay preacher by calling. He ...
in 1712, and is often referred to as the Newcomen fire engine (see below) or simply as a Newcomen engine. The engine was operated by condensing steam drawn into the cylinder, thereby creating a partial vacuum which allowed the atmospheric pressure to push the piston into the cylinder. It was historically significant as the first practical device to harness
steam Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization. ...
to produce
mechanical work In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force stren ...
. Newcomen engines were used throughout Britain and Europe, principally to pump water out of mines. Hundreds were constructed throughout the 18th century.
James Watt James Watt (; 30 January 1736 (19 January 1736 OS) – 25 August 1819) was a Scottish inventor, mechanical engineer, and chemist who improved on Thomas Newcomen's 1712 Newcomen steam engine with his Watt steam engine in 1776, which was fu ...
's later engine design was an improved version of the Newcomen engine that roughly doubled
fuel efficiency Fuel efficiency is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical potential energy contained in a carrier (fuel) into kinetic energy or work. Overall fuel efficiency may vary per device, w ...
. Many atmospheric engines were converted to the Watt design, for a price which was based on a fraction of the fuel-savings. As a result, Watt is today better known than Newcomen in relation to the origin of the
steam engine A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be trans ...
.


Precursors

Prior to Newcomen a number of small
steam Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization. ...
devices of various sorts had been made, but most were essentially novelties.University of Rochester, NY, ''The growth of the steam engine'' online history resource, chapter one.
Around 1600 a number of experimenters used steam to power small
fountain A fountain, from the Latin "fons" (genitive "fontis"), meaning source or spring, is a decorative reservoir used for discharging water. It is also a structure that jets water into the air for a decorative or dramatic effect. Fountains were or ...
s working like a
coffee percolator A coffee percolator is a type of pot used for the brewing of coffee by continually cycling the boiling or nearly boiling brew through the grounds using gravity until the required strength is reached. Coffee percolators once enjoyed great popul ...
. First a container was filled with water via a pipe, which extended through the top of the container to nearly the bottom. The bottom of the pipe would be submerged in the water, making the container airtight. The container was then heated to make the water boil. The steam generated pressurized the container, but the inner pipe, immersed at the bottom by liquid, and lacking an airtight seal at top, remained at a lower pressure; expanding steam forced the water at the bottom of the container into and up the pipe to spurt out of a
nozzle A nozzle is a device designed to control the direction or characteristics of a fluid flow (specially to increase velocity) as it exits (or enters) an enclosed chamber or pipe. A nozzle is often a pipe or tube of varying cross sectional area, a ...
on top. These devices had limited effectiveness but illustrated the principle's viability. In 1606, the
Spaniard Spaniards, or Spanish people, are a Romance ethnic group native to Spain. Within Spain, there are a number of national and regional ethnic identities that reflect the country's complex history, including a number of different languages, both ...
,
Jerónimo de Ayanz y Beaumont Jerónimo de Ayanz y Beaumont (1553 – March 23, 1613 AD) was a Spanish soldier, painter, astronomer, musician and inventor. He was born in Guendulain (Navarre). He built an air-renovated diving suit that allowed a man to remain underwat ...
demonstrated and was granted a patent for a steam powered water pump. The pump was successfully used to drain the inundated mines of Guadalcanal, Spain. In 1662 Edward Somerset, 2nd Marquess of Worcester, published a book containing several ideas he had been working on. One was for a steam-powered pump to supply water to fountains; the device alternately used a partial
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
and steam pressure. Two containers were alternately filled with steam, then sprayed with cold water making the steam within condense; this produced a partial vacuum that would draw water through a pipe up from a
well A well is an excavation or structure created in the ground by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. Th ...
to the container. A fresh charge of steam under pressure then drove the water from the container up another pipe to a higher-level header before that steam condensed and the cycle repeated. By working the two containers alternately, the delivery rate to the header tank could be increased.


Savery's "Miner's Friend"

In 1698
Thomas Savery Thomas Savery (; c. 1650 – 15 May 1715) was an English inventor and engineer. He invented the first commercially used steam-powered device, a steam pump which is often referred to as the "Savery engine". Savery's steam pump was a revolution ...
patented a steam-powered pump he called the "Miner's Friend", essentially identical to Somerset's design and almost certainly a direct copy. The process of cooling and creating the vacuum was fairly slow, so Savery later added an external cold water spray to quickly cool the steam. Savery's invention cannot be strictly regarded as the first steam "engine" since it had no moving parts and could not transmit its power to any external device. There were evidently high hopes for the Miner's Friend, which led Parliament to extend the life of the patent by 21 years, so that the 1699 patent would not expire until 1733. Unfortunately, Savery's device proved much less successful than had been hoped. A theoretical problem with Savery's device stemmed from the fact that a vacuum could only raise water to a maximum height of about ; to this could be added another , or so, raised by steam pressure. This was insufficient to pump water out of a mine. In Savery's pamphlet, he suggests setting the boiler and containers on a ledge in the mineshaft and even a series of two or more pumps for deeper levels. Obviously these were inconvenient solutions and some sort of mechanical pump working at surface level – one that lifted the water directly instead of "sucking" it up – was desirable. Such pumps were common already, powered by horses, but required a vertical reciprocating drive that Savery's system did not provide. The more practical problem concerned having a boiler operating under pressure, as demonstrated when the boiler of an engine at Wednesbury exploded, perhaps in 1705.


Denis Papin's experimental steam cylinder and piston

Louis Figuier in his monumental work gives a full quotation of
Denis Papin Denis Papin FRS (; 22 August 1647 – 26 August 1713) was a French physicist, mathematician and inventor, best known for his pioneering invention of the steam digester, the forerunner of the pressure cooker and of the steam engine. Early l ...
's paper published in 1690 in ''Acta eruditorum'' at Leipzig, entitled ''"Nouvelle méthode pour obtenir à bas prix des forces considérables"'' (A new method for cheaply obtaining considerable forces). It seems that the idea came to Papin whilst working with
Robert Boyle Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the founders of ...
at the
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
in London. Papin describes first pouring a small quantity of water into the bottom of a vertical cylinder, inserting a piston on a rod and after first evacuating the air below the piston, placing a fire beneath the cylinder to boil the water away and create enough steam pressure to raise the piston to the top end of the cylinder. The piston was then temporarily locked in the upper position by a spring catch engaging a notch in the rod. The fire was then removed, allowing the cylinder to cool, which condensed steam back into water, thus creating a vacuum beneath the piston. To the end of the piston rod was attached a cord passing over two pulleys and a weight hung down from the cord's end. Upon releasing the catch, the piston was sharply drawn down to the bottom of the cylinder by the pressure differential between the atmosphere and the created vacuum; enough force was thus generated to raise a weight. Although the engine certainly worked as far as it went, it was devised merely to demonstrate the principle and having got this far, Papin never developed it further, although in his paper he did write about the potential of boats driven by "firetubes". Instead he allowed himself to be distracted into developing a variant of the Savery engine.


Introduction and spread

Newcomen took forward Papin's experiment and made it workable, although little information exists as to exactly how this came about. The main problem to which Papin had given no solution was how to make the action repeatable at regular intervals. The way forward was to provide, as Savery had, a boiler capable of ensuring the continuity of the supply of steam to the cylinder, providing the vacuum power stroke by condensing the steam, and disposing of the water once it had been condensed. The power piston was hung by chains from the end of a rocking beam. Unlike Savery's device, pumping was entirely mechanical, the work of the steam engine being to lift a weighted rod slung from the opposite extremity of the rocking beam. The rod descended the mine shaft by gravity and drove a force pump, or pole pump (or most often a gang of two) inside the mineshaft. The suction stroke of the pump was only for the length of the upward (priming) stroke, there consequently was no longer the 30-foot restriction of a vacuum pump and water could be forced up a column from far greater depths. The boiler supplied the steam at extremely low pressure and was at first located immediately beneath the power cylinder but could also be placed behind a separating wall with a connecting steam pipe. Making all this work needed the skill of a practical engineer; Newcomen's trade as an "ironmonger" or metal merchant would have given him significant practical knowledge of what materials would be suitable for such an engine and brought him into contact with people having even more detailed knowledge. The earliest examples for which reliable records exist were two engines in the Black Country, of which the more famous was that erected in 1712 at the Conygree Coalworks in Bloomfield Road
Tipton Tipton is an industrial town in the West Midlands in England with a population of around 38,777 at the 2011 UK Census. It is located northwest of Birmingham. Tipton was once one of the most heavily industrialised towns in the Black Country, ...
now the site of "The
Angle Ring The Angle Ring Company Limited is an engineering firm based in Tipton, West Midlands, England England is a Countries of the United Kingdom, country that is part of the United Kingdom. It shares land borders with Wales to its west and Scot ...
Company Limited",
Tipton Tipton is an industrial town in the West Midlands in England with a population of around 38,777 at the 2011 UK Census. It is located northwest of Birmingham. Tipton was once one of the most heavily industrialised towns in the Black Country, ...
. This is generally accepted as the first successful Newcomen engine and followed by one built a mile and a half east of
Wolverhampton Wolverhampton () is a city, metropolitan borough and administrative centre in the West Midlands, England. The population size has increased by 5.7%, from around 249,500 in 2011 to 263,700 in 2021. People from the city are called "Wulfrunian ...
. Both these were used by Newcomen and his partner
John Calley John Nicholas Calley (July 8, 1930 – September 13, 2011) was an American film studio executive and producer. He was quite influential during his years at Warner Bros., where he worked from 1968 to 1981, and "produced a film a month, on average, ...
to pump out water-filled coal mines. A working replica can today be seen at the nearby Black Country Living Museum, which stands on another part of what was Lord Dudley's Conygree Park. Another Newcomen engine was in Cornwall. Its location is uncertain, but it is known that one was in operation at Wheal Vor mine in 1715. Soon orders from wet mines all over England were coming in, and some have suggested that word of his achievement was spread through his
Baptist Baptists form a major branch of Protestantism distinguished by baptizing professing Christian believers only ( believer's baptism), and doing so by complete immersion. Baptist churches also generally subscribe to the doctrines of soul com ...
connections. Since Savery's patent had not yet run out, Newcomen was forced to come to an arrangement with Savery and operate under the latter's patent, as its term was much longer than any Newcomen could have easily obtained. During the latter years of its currency, the patent belonged to an unincorporated company, ''The Proprietors of the Invention for raising water by fire''. Although its first use was in coal-mining areas, Newcomen's engine was also used for pumping water out of the metal mines in his native West Country, such as the tin mines of Cornwall. By the time of his death, Newcomen and others had installed over a hundred of his engines, not only in the West Country and the Midlands but also in north Wales, near Newcastle and in Cumbria. Small numbers were built in other European countries, including in France, Belgium, Spain, and Hungary, also at
Dannemora, Sweden Dannemora is an old mining town and a locality situated in Östhammar Municipality, Uppsala County, Sweden. It had 213 inhabitants in 2010. Dannemora mine Dannemora is the location of an important iron ore mine, the Dannemora mine, which formed ...
. Evidence of the use of a Newcomen Steam Engine associated with early coal mines was found in 2010 in Midlothian, VA (site of some of the first coal mines in the US). (Dutton and Associates survey dated 24 November 2009).


Technical details


Components

Although based on simple principles, Newcomen's engine was rather complex and showed signs of incremental development, problems being
empirical Empirical evidence for a proposition is evidence, i.e. what supports or counters this proposition, that is constituted by or accessible to sense experience or experimental procedure. Empirical evidence is of central importance to the sciences and ...
ly addressed as they arose. It consisted of a
boiler A boiler is a closed vessel in which fluid (generally water) is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central h ...
A, usually a haystack boiler, situated directly below the cylinder. This produced large quantities of very low pressure steam, no more than 1 – 2 psi (0.07 – 0.14 bar) – the maximum allowable pressure for a boiler that in earlier versions was made of copper with a domed top of lead and later entirely assembled from small riveted iron plates. The action of the engine was transmitted through a rocking "Great balanced Beam", the
fulcrum A fulcrum is the support about which a lever pivots. Fulcrum may also refer to: Companies and organizations * Fulcrum (Anglican think tank), a Church of England think tank * Fulcrum Press, a British publisher of poetry * Fulcrum Wheels, a bicy ...
E of which rested on the very solid end-gable wall of the purpose-built engine house with the pump side projecting outside of the building, the engine being located ''in-house''. The pump rods were slung by a chain from the arch-head F of the great beam. From the in-house arch-head D was suspended a piston P working in a cylinder B, the top end of which was open to the atmosphere above the
piston A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tig ...
and the bottom end closed, apart from the short admission pipe connecting the cylinder to the boiler; early cylinders were made of cast brass, but cast iron was soon found more effective and much cheaper to produce. The piston was surrounded by a seal in the form of a leather ring, but as the cylinder bore was finished by hand and not absolutely true, a layer of water had to be constantly maintained on top of the piston. Installed high up in the engine house was a water tank C (or ''header tank'') fed by a small in-house pump slung from a smaller arch-head. The header tank supplied cold water under pressure via a ''stand-pipe'' for condensing the steam in the cylinder with a small branch supplying the cylinder-sealing water; at each top stroke of the piston excess warm sealing water overflowed down two pipes, one to the in-house well and the other to feed the boiler by gravity.


Operation

The pump equipment was heavier than the steam piston, so that the position of the beam at rest was pump-side down/engine-side up, which was called "out of the house". To start the engine, the regulator
valve A valve is a device or natural object that regulates, directs or controls the flow of a fluid (gases, liquids, fluidized solids, or slurries) by opening, closing, or partially obstructing various passageways. Valves are technically fitting ...
V was opened and steam admitted into the cylinder from the boiler, filling the space beneath the piston. The regulator valve was then closed and the water injection valve V' briefly snapped open and shut, sending a spray of cold water into the cylinder. This condensed the steam and created a partial vacuum under the piston. Pressure differential between the atmosphere above the piston and the partial vacuum below then drove the piston down making the power stroke, bringing the beam "into the house" and raising the pump gear. Steam was then readmitted to the cylinder, destroying the vacuum and driving the condensate down the sinking or "eduction" pipe. As the low pressure steam from the boiler flowed into the cylinder, the weight of the pump and gear returned the beam to its initial position whilst at the same time driving the water up from the mine. This cycle was repeated around 12 times per minute.


Snifting valve

Newcomen found that his first engine would stop working after a while, and eventually discovered that this was due to small amounts of air being admitted to the cylinder with the steam. Water usually contains some dissolved air, and boiling the water released this with the steam. This air could not be condensed by the water spray and gradually accumulated until the engine became "wind logged". To prevent this, a release valve called a "snifting clack" or snifter valve was included near the bottom of the cylinder. This opened briefly when steam was first admitted to and non-condensable gas was driven from the cylinder. Its name was derived from the noise it made when it operated to release the air and steam "like a Man snifting with a Cold".


Automation

In early versions, the
valve A valve is a device or natural object that regulates, directs or controls the flow of a fluid (gases, liquids, fluidized solids, or slurries) by opening, closing, or partially obstructing various passageways. Valves are technically fitting ...
s or ''plugs'' as they were then called, were operated manually by the ''plug man'' but the repetitive action demanded precise timing, making automatic action desirable. This was obtained by means of a ''plug tree'' which was a beam suspended vertically alongside the cylinder from a small arch head by crossed chains, its function being to open and close the valves automatically when the beam reached certain positions, by means of tappets and
escapement An escapement is a mechanical linkage in mechanical watches and clocks that gives impulses to the timekeeping element and periodically releases the gear train to move forward, advancing the clock's hands. The impulse action transfers energy ...
mechanisms using weights. On the 1712 engine, the water feed pump was attached to the bottom of the plug tree, but later engines had the pump outside suspended from a separate small arch-head. There is a common legend that in 1713 a ''cock boy'' named Humphrey Potter, whose duty it was to open and shut the valves of an engine he attended, made the engine self-acting by causing the beam itself to open and close the valves by suitable cords and catches (known as the "potter cord"); however the plug tree device (the first form of
valve gear The valve gear of a steam engine is the mechanism that operates the inlet and exhaust valves to admit steam into the cylinder and allow exhaust steam to escape, respectively, at the correct points in the cycle. It can also serve as a reversing ...
) was very likely established practice before 1715, and is clearly depicted in the earliest known images of Newcomen engines by Henry Beighton (1717) (believed by Hulse to depict the 1714 Griff colliery engine) and by Thomas Barney (1719) (depicting the 1712 Dudley Castle engine). Because of the very heavy steam demands, the engine had to be periodically stopped and restarted, but even this process was automated by means of a buoy rising and falling in a vertical stand pipe fixed to the boiler. The buoy was attached to the ''scoggen'', a weighted lever that worked a stop blocking the water injection valve shut until more steam had been raised.


Pumps

Most images show only the engine side, giving no information on the pumps. Current opinion is that at least on the early engines, dead-weight force
pumps A pump is a device that moves fluids ( liquids or gases), or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic energy. Pumps can be classified into three major groups according to the method they ...
were used, the work of the engine being solely to lift the pump side ready for the next downwards pump stroke. This is the arrangement used for the Dudley Castle replica which effectively works at the original stated rate of 12 strokes per minute/10 gallons (54.6litres) lifted per stroke. The later Watt engines worked lift pumps powered by the engine stroke and it may be that later versions of the Newcomen engine did so too.


Development and application

Towards the close of its career, the atmospheric engine was much improved in its mechanical details and its proportions by
John Smeaton John Smeaton (8 June 1724 – 28 October 1792) was a British civil engineer responsible for the design of bridges, canals, harbours and lighthouses. He was also a capable mechanical engineer and an eminent physicist. Smeaton was the fir ...
, who built many large engines of this type during the 1770s. The urgent need for an engine to give rotary motion was making itself felt and this was done with limited success by Wasborough and Pickard using a Newcomen engine to drive a flywheel through a
crank Crank may refer to: Mechanisms * Crank (mechanism), in mechanical engineering, a bent portion of an axle or shaft, or an arm keyed at right angles to the end of a shaft, by which motion is imparted to or received from it * Crankset, the componen ...
. Although the principle of the crank had long been known, Pickard managed to obtain a 12-year patent in 1780 for the specific application of the crank to steam engines; this was a setback to Boulton and Watt who got round the patent by applying the sun and planet motion to their advanced double-acting rotative engine of 1782. By 1725 the Newcomen engine was in common use in mining, particularly
collieries Coal mining is the process of extracting coal from the ground. Coal is valued for its energy content and since the 1880s has been widely used to generate electricity. Steel and cement industries use coal as a fuel for extraction of iron from ...
. It held its place with little material change for the rest of the century. Use of the Newcomen engine was extended in some places to pump municipal water supply; for instance the first Newcomen engine in France was built at
Passy Passy () is an area of Paris, France, located in the 16th arrondissement of Paris, 16th arrondissement, on the Rive Droite, Right Bank. It is home to many of the city's wealthiest residents. Passy was a commune in France, commune on the outskir ...
in 1726 to pump water from the Seine to the city of Paris. It was also used to power machinery indirectly, by returning water from below a
water wheel A water wheel is a machine for converting the energy of flowing or falling water into useful forms of power, often in a watermill. A water wheel consists of a wheel (usually constructed from wood or metal), with a number of blades or bucke ...
to a reservoir above it, so that the same water could again turn the wheel. Among the earliest examples of this was at
Coalbrookdale Coalbrookdale is a village in the Ironbridge Gorge in Shropshire, England, containing a settlement of great significance in the history of iron ore smelting. It lies within the civil parish called the Gorge. This is where iron ore was first sm ...
. A horse-powered pump had been installed in 1735 to return water to the pool above the Old Blast Furnace. This was replaced by a Newcomen engine in 1742–3. Several new furnaces built in Shropshire in the 1750s were powered in a similar way, including Horsehay and
Ketley Ketley is a large village and part of Telford in the borough of Telford and Wrekin and ceremonial county of Shropshire, England. It is a civil parishes in England, civil parish. Immediately to the north of Ketley is Hadley, Shropshire, Hadley. R ...
Furnaces and Madeley Wood or Bedlam Furnaces. The latter does not seem to have had a pool above the furnace, merely a tank into which the water was pumped. In other industries, engine-pumping was less common, but
Richard Arkwright Sir Richard Arkwright (23 December 1732 – 3 August 1792) was an English inventor and a leading entrepreneur during the early Industrial Revolution. He is credited as the driving force behind the development of the spinning frame, known as t ...
used an engine to provide additional power for his cotton mill. Attempts were made to drive machinery by Newcomen engines, but these were unsuccessful, as the single power stroke produced a very jerky motion.


Successor

The main problem with the Newcomen design was that it used energy inefficiently, and was therefore expensive to operate. After the water vapor within was cooled enough to create the vacuum, the cylinder walls were cold enough to condense some of the steam as it was admitted during the next intake stroke. This meant that a considerable amount of fuel was being used just to heat the cylinder back to the point where the steam would start to fill it again. As the heat losses were related to the surfaces, while useful work related to the volume, increases in the size of the engine increased efficiency, and Newcomen engines became larger in time. However, efficiency did not matter very much within the context of a colliery, where coal was freely available. Newcomen's engine was only replaced when
James Watt James Watt (; 30 January 1736 (19 January 1736 OS) – 25 August 1819) was a Scottish inventor, mechanical engineer, and chemist who improved on Thomas Newcomen's 1712 Newcomen steam engine with his Watt steam engine in 1776, which was fu ...
improved it in 1769 to avoid this problem (Watt had been asked to repair a model of a Newcomen engine by
Glasgow University , image = UofG Coat of Arms.png , image_size = 150px , caption = Coat of arms Flag , latin_name = Universitas Glasguensis , motto = la, Via, Veritas, Vita , ...
; a small model that exaggerated the problem). In the
Watt steam engine The Watt steam engine design became synonymous with steam engines, and it was many years before significantly new designs began to replace the basic Watt design. The first steam engines, introduced by Thomas Newcomen in 1712, were of the "at ...
, condensation took place in an exterior condenser unit, attached to the steam cylinder via a pipe. When a valve on the pipe was opened, the vacuum in the condenser would, in turn, evacuate that part of the cylinder below the piston. This eliminated the cooling of the main cylinder walls and such, and dramatically reduced fuel use. It also enabled the development of a
double-acting cylinder In mechanical engineering, the cylinders of reciprocating engines are often classified by whether they are single- or double-acting, depending on how the working fluid acts on the piston. Single-acting A single-acting cylinder in a reciprocati ...
, with both upwards and downwards power strokes, increasing amount of power from the engine without a great increase in the size of the engine. Watt's design, introduced in 1769, did not eliminate Newcomen engines immediately. Watt's vigorous defence of his
patents A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an enabling disclosure of the invention."A p ...
resulted in the continued use of the Newcomen engine in an effort to avoid
royalty payments A royalty payment is a payment made by one party to another that owns a particular asset, for the right to ongoing use of that asset. Royalties are typically agreed upon as a percentage of gross or net revenues derived from the use of an asset o ...
. When his patents expired in 1800, there was a rush to install Watt engines, and Newcomen engines were eclipsed, even in collieries.


Surviving examples

The Newcomen Memorial Engine can be seen operating in Newcomen's home town of Dartmouth, where it was moved in 1963 by the Newcomen Society. This is believed to date from 1725, when it was initially installed at the Griff Colliery near Coventry. An engine was installed at a colliery in
Ashton-under-Lyne Ashton-under-Lyne is a market town in Tameside, Greater Manchester, England. The population was 45,198 at the 2011 census. Historically in Lancashire, it is on the north bank of the River Tame, in the foothills of the Pennines, east of Manch ...
in about 1760. Known locally as ''
Fairbottom Bobs ''Fairbottom Bobs'' is a Newcomen-type beam engine that was used in the 18th century as a pumping engine to drain a colliery near Ashton-under-Lyne. It is probably the world's second-oldest surviving steam engine. The engine was installed at ...
'' it is now preserved at the
Henry Ford Museum The Henry Ford (also known as the Henry Ford Museum of American Innovation and Greenfield Village, and as the Edison Institute) is a history museum complex in the Detroit suburb of Dearborn, Michigan, United States. The museum collection contains ...
in
Dearborn, Michigan Dearborn is a city in Wayne County in the U.S. state of Michigan. At the 2020 census, it had a population of 109,976. Dearborn is the seventh most-populated city in Michigan and is home to the largest Muslim population in the United States pe ...
. The only Newcomen-style engine still extant in its original location is at what is now the Elsecar Heritage Centre, near Barnsley in South Yorkshire. This was probably the last commercially used Newcomen-style engine, as it ran from 1795 until 1923. The engine underwent extensive conservation works, together with its original shaft and engine-house, which were completed in autumn 2014. A static example of a Newcomen Engine is in the
Science Museum A science museum is a museum devoted primarily to science. Older science museums tended to concentrate on static displays of objects related to natural history, paleontology, geology, industry and industrial machinery, etc. Modern trends in ...
. A static example of a Newcomen Engine is in the
National Museum of Scotland The National Museum of Scotland in Edinburgh, Scotland, was formed in 2006 with the merger of the new Museum of Scotland, with collections relating to Scottish antiquities, culture and history, and the adjacent Royal Scottish Museum (opened in ...
. Formerly at Caprington Colliery at Kilmarnock. An example, originally used at Farme Colliery is on display at Summerlee, Museum of Scottish Industrial Life; unusually it was used for winding rather than water pumping, and had been in operation for almost a century when examined in situ in 1902.The Mysteries of the Farme Colliery Engine
Justin Parkes,
North Lanarkshire Council North Lanarkshire ( sco, North Lanrikshire; gd, Siorrachd Lannraig a Tuath) is one of 32 council areas of Scotland. It borders the northeast of the City of Glasgow and contains many of Glasgow's suburbs and commuter towns and villages. It also ...
In 1986, a full-scale operational replica of the 1712 Newcomen Steam Engine was completed at the Black Country Living Museum in Dudley. It is the only full-size working replica of the engine in existence. The 'fire engine' as it was known, is an impressive brick building from which a wooden beam projects through one wall. Rods hang from the outer end of the beam and operate pumps at the bottom of the mine shaft which raise the water to the surface. The engine itself is simple, with only a boiler, a cylinder and piston and operating valves. A coal fire heats the water in the boiler which is little more than a covered pan and the steam generated then passes through a valve into the brass cylinder above the boiler. The cylinder is more than 2 metres long and 52 centimetres in diameter. The steam in the cylinder is condensed by injecting cold water and the vacuum beneath the piston pulls the inner end of the beam down and causes the pump to move.


See also

* Timeline of steam power *
Cataract A cataract is a cloudy area in the lens of the eye that leads to a decrease in vision. Cataracts often develop slowly and can affect one or both eyes. Symptoms may include faded colors, blurry or double vision, halos around light, trouble wi ...
– the speed governing device used on beam engines *
Atmospheric Railway An atmospheric railway uses differential air pressure to provide power for propulsion of a railway vehicle. A static power source can transmit motive power to the vehicle in this way, avoiding the necessity of carrying mobile power generating eq ...


References


Further reading

* * Reprint: * * *


External links


English Heritage – National Monuments Record for Elsecar Newcomen engine
{{DEFAULTSORT:Newcomen Steam Engine Industrial Revolution Beam engines Stationary steam engines Steam engines Piston engines History of the steam engine