Neural networks
   HOME

TheInfoList



OR:

A neural network is a network or
circuit Circuit may refer to: Science and technology Electrical engineering * Electrical circuit, a complete electrical network with a closed-loop giving a return path for current ** Analog circuit, uses continuous signal levels ** Balanced circu ...
of biological
neuron A neuron, neurone, or nerve cell is an membrane potential#Cell excitability, electrically excitable cell (biology), cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous ...
s, or, in a modern sense, an artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is either a
biological neural network A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. Neural circuits interconnect to one another to form large scale brain networks. Biological neural networks have inspired t ...
, made up of biological neurons, or an artificial neural network, used for solving
artificial intelligence Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machine A machine is a physical system using Power (physics), power to apply Force, forces and control Motion, moveme ...
(AI) problems. The connections of the biological neuron are modeled in artificial neural networks as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed. This activity is referred to as a linear combination. Finally, an activation function controls the
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of a ...
of the output. For example, an acceptable range of output is usually between 0 and 1, or it could be −1 and 1. These artificial networks may be used for predictive modeling, adaptive control and applications where they can be trained via a dataset. Self-learning resulting from experience can occur within networks, which can derive conclusions from a complex and seemingly unrelated set of information.


Overview

A
biological neural network A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. Neural circuits interconnect to one another to form large scale brain networks. Biological neural networks have inspired t ...
is composed of a group of chemically connected or functionally associated neurons. A single neuron may be connected to many other neurons and the total number of neurons and connections in a network may be extensive. Connections, called
synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses fr ...
s, are usually formed from
axon An axon (from Greek ἄξων ''áxōn'', axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action ...
s to dendrites, though dendrodendritic synapses and other connections are possible. Apart from electrical signalling, there are other forms of signalling that arise from
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neur ...
diffusion. Artificial intelligence, cognitive modelling, and neural networks are information processing paradigms inspired by how biological neural systems process data.
Artificial intelligence Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machine A machine is a physical system using Power (physics), power to apply Force, forces and control Motion, moveme ...
and
cognitive modelling A cognitive model is an approximation of one or more cognitive processes in humans or other animals for the purposes of comprehension and prediction. There are many types of cognitive models, and they can range from box-and-arrow diagrams to a set o ...
try to simulate some properties of biological neural networks. In the
artificial intelligence Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machine A machine is a physical system using Power (physics), power to apply Force, forces and control Motion, moveme ...
field, artificial neural networks have been applied successfully to speech recognition, image analysis and adaptive control, in order to construct
software agents In computer science, a software agent or software AI is a computer program that acts for a user or other program in a relationship of agency, which derives from the Latin ''agere'' (to do): an agreement to act on one's behalf. Such "action on behal ...
(in computer and video games) or autonomous robots. Historically, digital computers evolved from the
von Neumann model The von Neumann architecture — also known as the von Neumann model or Princeton architecture — is a computer architecture based on a 1945 description by John von Neumann, and by others, in the ''First Draft of a Report on the EDVAC''. The ...
, and operate via the execution of explicit instructions via access to memory by a number of processors. On the other hand, the origins of neural networks are based on efforts to model information processing in biological systems. Unlike the von Neumann model, neural network computing does not separate memory and processing. Neural network theory has served to identify better how the neurons in the brain function and provide the basis for efforts to create artificial intelligence.


History

The preliminary theoretical base for contemporary neural networks was independently proposed by Alexander Bain (1873) and
William James William James (January 11, 1842 – August 26, 1910) was an American philosopher, historian, and psychologist, and the first educator to offer a psychology course in the United States. James is considered to be a leading thinker of the la ...
(1890). In their work, both thoughts and body activity resulted from interactions among neurons within the brain. For Bain, every activity led to the firing of a certain set of neurons. When activities were repeated, the connections between those neurons strengthened. According to his theory, this repetition was what led to the formation of memory. The general scientific community at the time was skeptical of Bain's theory because it required what appeared to be an inordinate number of neural connections within the brain. It is now apparent that the brain is exceedingly complex and that the same brain “wiring” can handle multiple problems and inputs. James's theory was similar to Bain's, however, he suggested that memories and actions resulted from electrical currents flowing among the neurons in the brain. His model, by focusing on the flow of electrical currents, did not require individual neural connections for each memory or action. C. S. Sherrington (1898) conducted experiments to test James's theory. He ran electrical currents down the spinal cords of rats. However, instead of demonstrating an increase in electrical current as projected by James, Sherrington found that the electrical current strength decreased as the testing continued over time. Importantly, this work led to the discovery of the concept of habituation. McCulloch and Pitts (1943) created a computational model for neural networks based on mathematics and algorithms. They called this model threshold logic. The model paved the way for neural network research to split into two distinct approaches. One approach focused on biological processes in the brain and the other focused on the application of neural networks to artificial intelligence. In the late 1940s psychologist Donald Hebb created a hypothesis of learning based on the mechanism of neural plasticity that is now known as
Hebbian learning Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell. It is an attempt to explain synaptic plasticity, the adaptatio ...
. Hebbian learning is considered to be a 'typical' unsupervised learning rule and its later variants were early models for long term potentiation. These ideas started being applied to computational models in 1948 with Turing's B-type machines. Farley and Clark (1954) first used computational machines, then called calculators, to simulate a Hebbian network at MIT. Other neural network computational machines were created by Rochester, Holland, Habit, and Duda (1956).
Rosenblatt Rosenblatt is a surname of German and Jewish origin, meaning " rose leaf". People with this surname include: *Albert Rosenblatt (born 1936), New York Court of Appeals judge *Dana Rosenblatt, known as "Dangerous" (born 1972), American boxer *Elie R ...
(1958) created the perceptron, an algorithm for pattern recognition based on a two-layer learning computer network using simple addition and subtraction. With mathematical notation, Rosenblatt also described circuitry not in the basic perceptron, such as the exclusive-or circuit, a circuit whose mathematical computation could not be processed until after the backpropagation algorithm was created by Werbos (1975). Neural network research stagnated after the publication of machine learning research by Marvin Minsky and Seymour Papert (1969). They discovered two key issues with the computational machines that processed neural networks. The first issue was that single-layer neural networks were incapable of processing the exclusive-or circuit. The second significant issue was that computers were not sophisticated enough to effectively handle the long run time required by large neural networks. Neural network research slowed until computers achieved greater processing power. Also key in later advances was the backpropagation algorithm which effectively solved the exclusive-or problem (Werbos 1975). In the late 1970s to early 1980s, interest briefly emerged in theoretically investigating the Ising model in relation to . In 1981, the Ising model was solved exactly for the general case of closed Cayley trees (with loops) with an arbitrary branching ratio and found to exhibit unusual phase transition behavior in its local-apex and long-range site-site correlations. The parallel distributed processing of the mid-1980s became popular under the name
connectionism Connectionism refers to both an approach in the field of cognitive science that hopes to explain mind, mental phenomena using artificial neural networks (ANN) and to a wide range of techniques and algorithms using ANNs in the context of artificial ...
. The text by Rumelhart and McClelland (1986) provided a full exposition on the use of connectionism in computers to simulate neural processes. Neural networks, as used in artificial intelligence, have traditionally been viewed as simplified models of neural processing in the brain, even though the relation between this model and brain biological architecture is debated, as it is not clear to what degree artificial neural networks mirror brain function.


Artificial intelligence

A ''neural network'' (NN), in the case of artificial neurons called ''artificial neural network'' (ANN) or ''simulated neural network'' (SNN), is an interconnected group of natural or artificial neurons that uses a mathematical or computational model for information processing based on a connectionistic approach to computation. In most cases an ANN is an adaptive system that changes its structure based on external or internal information that flows through the network. In more practical terms neural networks are non-linear statistical data modeling or
decision making In psychology, decision-making (also spelled decision making and decisionmaking) is regarded as the cognitive process resulting in the selection of a belief or a course of action among several possible alternative options. It could be either ra ...
tools. They can be used to model complex relationships between inputs and outputs or to find patterns in data. An artificial neural network involves a network of simple processing elements ( artificial neurons) which can exhibit complex global behavior, determined by the connections between the processing elements and element parameters. Artificial neurons were first proposed in 1943 by Warren McCulloch, a neurophysiologist, and Walter Pitts, a logician, who first collaborated at the
University of Chicago The University of Chicago (UChicago, Chicago, U of C, or UChi) is a private university, private research university in Chicago, Illinois. Its main campus is located in Chicago's Hyde Park, Chicago, Hyde Park neighborhood. The University of Chic ...
. One classical type of artificial neural network is the recurrent Hopfield network. The concept of a neural network appears to have first been proposed by
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical c ...
in his 1948 paper ''Intelligent Machinery'' in which he called them "B-type unorganised machines". The utility of artificial neural network models lies in the fact that they can be used to infer a function from observations and also to use it. Unsupervised neural networks can also be used to learn representations of the input that capture the salient characteristics of the input distribution, e.g., see the Boltzmann machine (1983), and more recently, deep learning algorithms, which can implicitly learn the distribution function of the observed data. Learning in neural networks is particularly useful in applications where the complexity of the data or task makes the design of such functions by hand impractical.


Applications

Neural networks can be used in different fields. The tasks to which artificial neural networks are applied tend to fall within the following broad categories: * Function approximation, or
regression analysis In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the 'outcome' or 'response' variable, or a 'label' in machine learning parlance) and one ...
, including time series prediction and modeling. * Classification, including
pattern A pattern is a regularity in the world, in human-made design, or in abstract ideas. As such, the elements of a pattern repeat in a predictable manner. A geometric pattern is a kind of pattern formed of geometric shapes and typically repeated li ...
and sequence recognition, novelty detection and sequential decision making. *
Data processing Data processing is the collection and manipulation of digital data to produce meaningful information. Data processing is a form of '' information processing'', which is the modification (processing) of information in any manner detectable by ...
, including filtering, clustering, blind signal separation and compression. Application areas of ANNs include nonlinear system identification and control (vehicle control, process control), game-playing and decision making (backgammon, chess, racing), pattern recognition (radar systems, face identification, object recognition), sequence recognition (gesture, speech, handwritten text recognition), medical diagnosis, financial applications, data mining (or knowledge discovery in databases, "KDD"), visualization and e-mail spam filtering. For example, it is possible to create a semantic profile of user's interests emerging from pictures trained for object recognition.


Neuroscience

Theoretical and
computational neuroscience Computational neuroscience (also known as theoretical neuroscience or mathematical neuroscience) is a branch of  neuroscience which employs mathematical models, computer simulations, theoretical analysis and abstractions of the brain to ...
is the field concerned with the analysis and computational modeling of biological neural systems. Since neural systems are intimately related to cognitive processes and behaviour, the field is closely related to cognitive and behavioural modeling. The aim of the field is to create models of biological neural systems in order to understand how biological systems work. To gain this understanding, neuroscientists strive to make a link between observed biological processes (data), biologically plausible mechanisms for neural processing and learning (
biological neural network A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. Neural circuits interconnect to one another to form large scale brain networks. Biological neural networks have inspired t ...
models) and theory (statistical learning theory and information theory).


Types of models

Many models are used; defined at different levels of abstraction, and modeling different aspects of neural systems. They range from models of the short-term behaviour of individual neurons, through models of the dynamics of neural circuitry arising from interactions between individual neurons, to models of behaviour arising from abstract neural modules that represent complete subsystems. These include models of the long-term and short-term plasticity of neural systems and its relation to learning and memory, from the individual neuron to the system level.


Connectivity

In August 2020 scientists reported that bi-directional connections, or added appropriate feedback connections, can accelerate and improve communication between and in modular neural networks of the brain's
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting o ...
and lower the threshold for their successful communication. They showed that adding feedback connections between a resonance pair can support successful propagation of a single pulse packet throughout the entire network.


Criticism

Historically, a common criticism of neural networks, particularly in robotics, was that they require a large diversity of training samples for real-world operation. This is not surprising, since any learning machine needs sufficient representative examples in order to capture the underlying structure that allows it to generalize to new cases. Dean Pomerleau, in his research presented in the paper "Knowledge-based Training of Artificial Neural Networks for Autonomous Robot Driving," uses a neural network to train a robotic vehicle to drive on multiple types of roads (single lane, multi-lane, dirt, etc.). A large amount of his research is devoted to (1) extrapolating multiple training scenarios from a single training experience, and (2) preserving past training diversity so that the system does not become overtrained (if, for example, it is presented with a series of right turns—it should not learn to always turn right). These issues are common in neural networks that must decide from amongst a wide variety of responses, but can be dealt with in several ways, for example by randomly shuffling the training examples, by using a numerical optimization algorithm that does not take too large steps when changing the network connections following an example, or by grouping examples in so-called mini-batches. A. K. Dewdney, a former ''
Scientific American ''Scientific American'', informally abbreviated ''SciAm'' or sometimes ''SA'', is an American popular science magazine. Many famous scientists, including Albert Einstein and Nikola Tesla, have contributed articles to it. In print since 1845, it i ...
'' columnist, wrote in 1997, "Although neural nets do solve a few toy problems, their powers of computation are so limited that I am surprised anyone takes them seriously as a general problem-solving tool." Arguments for Dewdney's position are that to implement large and effective software neural networks, much processing and storage resources need to be committed. While the brain has hardware tailored to the task of processing signals through a graph of neurons, simulating even a most simplified form on Von Neumann technology may compel a neural network designer to fill many millions of
database In computing, a database is an organized collection of data stored and accessed electronically. Small databases can be stored on a file system, while large databases are hosted on computer clusters or cloud storage. The design of databases spa ...
rows for its connections—which can consume vast amounts of computer
memory Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered ...
and data storage capacity. Furthermore, the designer of neural network systems will often need to simulate the transmission of signals through many of these connections and their associated neurons—which must often be matched with incredible amounts of
CPU A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, and ...
processing power and time. While neural networks often yield ''effective'' programs, they too often do so at the cost of ''efficiency'' (they tend to consume considerable amounts of time and money). Arguments against Dewdney's position are that neural nets have been successfully used to solve many complex and diverse tasks, such as autonomously flying aircraft. Technology writer
Roger Bridgman Roger is a given name, usually masculine, and a surname. The given name is derived from the Old French personal names ' and '. These names are of Germanic origin, derived from the elements ', ''χrōþi'' ("fame", "renown", "honour") and ', ' ...
commented on Dewdney's statements about neural nets:
Neural networks, for instance, are in the dock not only because they have been hyped to high heaven, (what hasn't?) but also because you could create a successful net without understanding how it worked: the bunch of numbers that captures its behaviour would in all probability be "an opaque, unreadable table...valueless as a scientific resource". In spite of his emphatic declaration that science is not technology, Dewdney seems here to pillory neural nets as bad science when most of those devising them are just trying to be good engineers. An unreadable table that a useful machine could read would still be well worth having.
Although it is true that analyzing what has been learned by an artificial neural network is difficult, it is much easier to do so than to analyze what has been learned by a biological neural network. Moreover, recent emphasis on the explainability of AI has contributed towards the development of methods, notably those based on attention mechanisms, for visualizing and explaining learned neural networks. Furthermore, researchers involved in exploring learning algorithms for neural networks are gradually uncovering generic principles that allow a learning machine to be successful. For example, Bengio and LeCun (2007) wrote an article regarding local vs non-local learning, as well as shallow vs deep architecture. Some other criticisms came from believers of hybrid models (combining neural networks and
symbolic Symbolic may refer to: * Symbol, something that represents an idea, a process, or a physical entity Mathematics, logic, and computing * Symbolic computation, a scientific area concerned with computing with mathematical formulas * Symbolic dynamic ...
approaches). They advocate the intermix of these two approaches and believe that hybrid models can better capture the mechanisms of the human mind (Sun and Bookman, 1990).


Recent improvements

While initially research had been concerned mostly with the electrical characteristics of neurons, a particularly important part of the investigation in recent years has been the exploration of the role of neuromodulators such as
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 8 ...
,
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Par ...
, and serotonin on behaviour and learning. Biophysical models, such as BCM theory, have been important in understanding mechanisms for synaptic plasticity, and have had applications in both computer science and neuroscience. Research is ongoing in understanding the computational algorithms used in the brain, with some recent biological evidence for radial basis networks and neural backpropagation as mechanisms for processing data. Computational devices have been created in CMOS for both biophysical simulation and neuromorphic computing. More recent efforts show promise for creating nanodevices for very large scale principal components analyses and convolution. If successful, these efforts could usher in a new era of neural computing that is a step beyond digital computing, because it depends on learning rather than programming and because it is fundamentally
analog Analog or analogue may refer to: Computing and electronics * Analog signal, in which information is encoded in a continuous variable ** Analog device, an apparatus that operates on analog signals *** Analog electronics, circuits which use analo ...
rather than digital even though the first instantiations may in fact be with CMOS digital devices. Between 2009 and 2012, the recurrent neural networks and deep feedforward neural networks developed in the research group of Jürgen Schmidhuber at the Swiss AI Lab IDSIA have won eight international competitions in pattern recognition and
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
. For example, multi-dimensional
long short term memory Long short-term memory (LSTM) is an artificial neural network used in the fields of artificial intelligence and deep learning. Unlike standard feedforward neural networks, LSTM has feedback connections. Such a recurrent neural network (RNN) ...
(LSTM) won three competitions in connected handwriting recognition at the 2009 International Conference on Document Analysis and Recognition (ICDAR), without any prior knowledge about the three different languages to be learned. Variants of the
back-propagation In machine learning, backpropagation (backprop, BP) is a widely used algorithm for training feedforward artificial neural networks. Generalizations of backpropagation exist for other artificial neural networks (ANNs), and for functions gener ...
algorithm as well as unsupervised methods by
Geoff Hinton Geoffrey Everest Hinton One or more of the preceding sentences incorporates text from the royalsociety.org website where: (born 6 December 1947) is a British-Canadian cognitive psychologist and computer scientist, most noted for his work on ar ...
and colleagues at the
University of Toronto The University of Toronto (UToronto or U of T) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen's Park. It was founded by royal charter in 1827 as King's College, the first institu ...
can be used to train deep, highly nonlinear neural architectures, similar to the 1980 Neocognitron by Kunihiko Fukushima, and the "standard architecture of vision", inspired by the simple and complex cells identified by David H. Hubel and Torsten Wiesel in the primary visual cortex. Radial basis function and wavelet networks have also been introduced. These can be shown to offer best approximation properties and have been applied in nonlinear system identification and classification applications. Deep learning feedforward networks alternate convolutional layers and max-pooling layers, topped by several pure classification layers. Fast GPU-based implementations of this approach have won several pattern recognition contests, including the IJCNN 2011 Traffic Sign Recognition Competition and the ISBI 2012 Segmentation of Neuronal Structures in Electron Microscopy Stacks challenge. Such neural networks also were the first artificial pattern recognizers to achieve human-competitive or even superhuman performanceD. C. Ciresan, U. Meier, J. Schmidhuber. Multi-column Deep Neural Networks for Image Classification. IEEE Conf. on Computer Vision and Pattern Recognition CVPR 2012. on benchmarks such as traffic sign recognition (IJCNN 2012), or the MNIST handwritten digits problem of Yann LeCun and colleagues at NYU.


See also


References


External links


A Brief Introduction to Neural Networks (D. Kriesel)
- Illustrated, bilingual manuscript about artificial neural networks; Topics so far: Perceptrons, Backpropagation, Radial Basis Functions, Recurrent Neural Networks, Self Organizing Maps, Hopfield Networks.

* ttps://web.archive.org/web/20091216110504/http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html Another introduction to ANNbr>Next Generation of Neural Networks
- Google Tech Talks
Neural Networks and Information
* {{Authority control Computational neuroscience Network architecture Networks Econometrics Emerging technologies