HOME

TheInfoList



OR:

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
. Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies. This discipline helps to indicate the merger of biological research with various fields of nanotechnology. Concepts that are enhanced through nanobiology include:
nanodevice A molecular machine, nanite, or nanomachine is a molecular component that produces quasi-mechanical movements (output) in response to specific stimuli (input). In cellular biology, macromolecular machines frequently perform tasks essential for l ...
s (such as biological machines), nanoparticles, and nanoscale phenomena that occurs within the discipline of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. Biologically inspired nanotechnology uses biological systems as the inspirations for technologies not yet created. However, as with nanotechnology and
biotechnology Biotechnology is the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services. The term ''biotechnology'' was first used by ...
, bionanotechnology does have many potential ethical issues associated with it. The most important objectives that are frequently found in nanobiology involve applying nanotools to relevant medical/biological problems and refining these applications. Developing new tools, such as
peptoid nanosheet In nanobiotechnology, a peptoid nanosheet is a synthetic protein structure made from peptoids. Peptoid nanosheets have a thickness of about three nanometers and a length of up to 100 micrometers, meaning that they have a two-dimensional, flat sha ...
s, for medical and biological purposes is another primary objective in nanotechnology. New nanotools are often made by refining the applications of the nanotools that are already being used. The imaging of native
biomolecule A biomolecule or biological molecule is a loosely used term for molecules present in organisms that are essential to one or more typically biological processes, such as cell division, morphogenesis, or development. Biomolecules include large ...
s,
biological membrane A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of th ...
s, and tissues is also a major topic for nanobiology researchers. Other topics concerning nanobiology include the use of
cantilever A cantilever is a rigid structural element that extends horizontally and is supported at only one end. Typically it extends from a flat vertical surface such as a wall, to which it must be firmly attached. Like other structural elements, a canti ...
array sensors and the application of
nanophotonics Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnolog ...
for manipulating molecular processes in living cells. Recently, the use of microorganisms to synthesize functional nanoparticles has been of great interest. Microorganisms can change the oxidation state of metals. These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to chemical and physical methods, microbial processes for synthesizing nanomaterials can be achieved in aqueous phase under gentle and environmentally benign conditions. This approach has become an attractive focus in current green bionanotechnology research towards sustainable development.


Terminology

The terms are often used interchangeably. When a distinction is intended, though, it is based on whether the focus is on applying biological ideas or on studying biology with nanotechnology. Bionanotechnology generally refers to the study of how the goals of nanotechnology can be guided by studying how biological "machines" work and adapting these biological motifs into improving existing nanotechnologies or creating new ones.Nolting B, “Biophysical Nanotechnology”. In: “Methods in Modern Biophysics”, Springer, 2005, Nanobiotechnology, on the other hand, refers to the ways that nanotechnology is used to create devices to study biological systems. In other words, nanobiotechnology is essentially miniaturized
biotechnology Biotechnology is the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services. The term ''biotechnology'' was first used by ...
, whereas bionanotechnology is a specific application of nanotechnology. For example,
DNA nanotechnology DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of geneti ...
or cellular engineering would be classified as bionanotechnology because they involve working with biomolecules on the nanoscale. Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to advance the goals of biology. The definitions enumerated above will be utilized whenever a distinction between nanobio and bionano is made in this article. However, given the overlapping usage of the terms in modern parlance, individual technologies may need to be evaluated to determine which term is more fitting. As such, they are best discussed in parallel.


Concepts

Most of the scientific concepts in bionanotechnology are derived from other fields. Biochemical principles that are used to understand the material properties of biological systems are central in bionanotechnology because those same principles are to be used to create new technologies. Material properties and applications studied in bionanoscience include mechanical properties (e.g. deformation, adhesion, failure), electrical/electronic (e.g. electromechanical stimulation,
capacitors A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of a c ...
, energy storage/batteries), optical (e.g. absorption,
luminescence Luminescence is spontaneous emission of light by a substance not resulting from heat; or "cold light". It is thus a form of cold-body radiation. It can be caused by chemical reactions, electrical energy, subatomic motions or stress on a crystal ...
, photochemistry), thermal (e.g. thermomutability, thermal management), biological (e.g. how cells interact with nanomaterials, molecular flaws/defects, biosensing, biological mechanisms such as mechanosensation), nanoscience of disease (e.g. genetic disease, cancer, organ/tissue failure), as well as
biological computing Biological computers use biologically derived molecules — such as DNA and/or proteins — to perform digital or real computations. The development of biocomputers has been made possible by the expanding new science of nanobiotechnology. The te ...
(e.g. DNA computing) and agriculture (target delivery of pesticides, hormones and fertilizers. The impact of bionanoscience, achieved through structural and mechanistic analyses of biological processes at nanoscale, is their translation into synthetic and technological applications through nanotechnology. Nanobiotechnology takes most of its fundamentals from nanotechnology. Most of the devices designed for nano-biotechnological use are directly based on other existing nanotechnologies. Nanobiotechnology is often used to describe the overlapping multidisciplinary activities associated with
biosensor A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
s, particularly where photonics, chemistry, biology,
biophysics Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations. ...
, nanomedicine, and engineering converge. Measurement in biology using wave guide techniques, such as dual-polarization interferometry, is another example.


Applications

Applications of bionanotechnology are extremely widespread. Insofar as the distinction holds, nanobiotechnology is much more commonplace in that it simply provides more tools for the study of biology. Bionanotechnology, on the other hand, promises to recreate biological mechanisms and pathways in a form that is useful in other ways.


Nanomedicine

Nanomedicine is a field of medical science whose applications are increasing. ;Nanobots The field includes
nanorobots Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or robots whose components are at or near the scale of a nanometer (10−9 meters). More specifically, nanorobotics (as opposed to ...
and biological machines, which constitute a very useful tool to develop this area of knowledge. In the past years, researchers have made many improvements in the different devices and systems required to develop functional nanorobots – such as motion and magnetic guidance. This supposes a new way of treating and dealing with diseases such as cancer; thanks to nanorobots, side effects of chemotherapy could get controlled, reduced and even eliminated, so some years from now, cancer patients could be offered an alternative to treat such diseases instead of chemotherapy, which causes secondary effects such as hair loss, fatigue or nausea killing not only cancerous cells but also the healthy ones. Nanobots could be used for various therapies, surgery, diagnosis, and medical imaging – such as via targeted drug-delivery to the brain (similar to nanoparticles) and other sites. Programmability for combinations of features such as "tissue penetration, site-targeting, stimuli responsiveness, and cargo-loading" makes such nanobots promising candidates for "
precision medicine Precision, precise or precisely may refer to: Science, and technology, and mathematics Mathematics and computing (general) * Accuracy and precision, measurement deviation from true value and its scatter * Significant figures, the number of digit ...
". At a clinical level, cancer treatment with nanomedicine would consist of the supply of nanorobots to the patient through an injection that will search for cancerous cells while leaving the healthy ones untouched. Patients that are treated through nanomedicine would thereby not notice the presence of these nanomachines inside them; the only thing that would be noticeable is the progressive improvement of their health. Nanobiotechnology may be useful for medicine formulation. "Precision antibiotics" has been proposed to make use of
bacteriocin Bacteriocins are proteinaceous or peptidic toxins produced by bacteria to inhibit the growth of similar or closely related bacterial strain(s). They are similar to yeast and paramecium killing factors, and are structurally, functionally, and ...
-mechanisms for targeted antibiotics. ;Nanoparticles Nanoparticles are already widely used in medicine. Its applications overlap with those of nanobots and in some cases it may be difficult to distinguish between them. They can be used to for diagnosis and
targeted drug delivery Targeted drug delivery, sometimes called smart drug delivery, is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. This means of delivery is l ...
, encapsulating medicine. Some can be manipulated using magnetic fields and, for example, experimentally, remote-controlled hormone release has been achieved this way. On example advanced application under development are "Trojan horse" designer-nanoparticles that makes blood cells eat away – from the inside out – portions of
atherosclerotic plaque An atheroma, or atheromatous plaque, is an abnormal and reversible accumulation of material in the inner layer of an arterial wall. The material consists of mostly macrophage cells, or debris, containing lipids, calcium and a variable amount ...
that cause heart attacks and are the current most common cause of death globally. ;Artificial cells
Artificial cell An artificial cell, synthetic cell or minimal cell is an engineered particle that mimics one or many functions of a biological cell. Often, artificial cells are biological or polymeric membranes which enclose biologically active materials. As such, ...
s such as synthetic red blood cells that have all or many of the natural cells' known broad natural properties and abilities could be used to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP
biosensor A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
s which may enable additional non-native functionalities. ;Other Nanofibers that mimic the matrix around cells and contain molecules that were engineered to wiggle was shown to be a potential therapy for spinal cord injury in mice. Technically, gene therapy can also be considered to be a form of nanobiotechnology or to move towards it. An example of an area of genome editing related developments that is more clearly nanobiotechnology than more conventional gene therapies, is synthetic fabrication of functional materials in tissues. Researcher made ''
C. elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (r ...
'' worms synthesize, fabricate, and assemble bioelectronic materials in its brain cells. They enabled modulation of membrane properties in specific neuron populations and manipulation of behavior in the living animals which might be useful in the study and treatments for diseases such as multiple sclerosis in specific and demonstrates the viability of such synthetic in vivo fabrication. Moreover, such genetically modified neurons may enable connecting external components – such as prosthetic limbs – to nerves.
Nanosensor Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, ...
s based on e.g. nanotubes, nanowires, cantilevers, or atomic force microscopy could be applied to diagnostic devices/sensors


Nanobiotechnology

Nanobiotechnology (sometimes referred to as nanobiology) in medicine may be best described as helping modern medicine progress from treating symptoms to generating
cure A cure is a substance or procedure that ends a medical condition, such as a medication, a surgical operation, a change in lifestyle or even a philosophical mindset that helps end a person's sufferings; or the state of being healed, or cured. The m ...
s and regenerating
biological tissue In biology, tissue is a biological organizational level between cells and a complete organ. A tissue is an ensemble of similar cells and their extracellular matrix from the same origin that together carry out a specific function. Organs are ...
s. Three American patients have received whole cultured
bladder The urinary bladder, or simply bladder, is a hollow organ in humans and other vertebrates that stores urine from the kidneys before disposal by urination. In humans the bladder is a distensible organ that sits on the pelvic floor. Urine en ...
s with the help of doctors who use nanobiology techniques in their practice. Also, it has been demonstrated in animal studies that a uterus can be grown outside the body and then placed in the body in order to produce a
baby An infant or baby is the very young offspring of human beings. ''Infant'' (from the Latin word ''infans'', meaning 'unable to speak' or 'speechless') is a formal or specialised synonym for the common term ''baby''. The terms may also be used to ...
.
Stem cell treatments Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition. , the only established therapy using stem cells is hematopoietic stem cell transplantation. This usually takes the form of a bone-marrow transplantation, bu ...
have been used to fix diseases that are found in the human heart and are in clinical trials in the United States. There is also funding for research into allowing people to have new limbs without having to resort to prosthesis. Artificial proteins might also become available to manufacture without the need for harsh chemicals and expensive machines. It has even been surmised that by the year 2055, computers may be made out of
biochemical Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
s and organic
salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively cha ...
.


In vivo biosensors

Another example of current nanobiotechnological research involves nanospheres coated with fluorescent polymers. Researchers are seeking to design polymers whose fluorescence is quenched when they encounter specific molecules. Different polymers would detect different metabolites. The polymer-coated spheres could become part of new biological assays, and the technology might someday lead to particles which could be introduced into the human body to track down metabolites associated with tumors and other health problems. Another example, from a different perspective, would be evaluation and therapy at the nanoscopic level, i.e. the treatment of nanobacteria (25-200 nm sized) as is done by NanoBiotech Pharma.


In vitro biosensors

"Nanoantennas" made out of DNA – a novel type of nano-scale optical antenna – can be attached to proteins and produce a signal via fluorescence when these perform their biological functions, in particular for their distinct
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or othe ...
s. This could be used for further nanobiotechnology such as various types of nanomachines, to develop new drugs, for bioresearch and for new avenues in biochemistry.


Energy

It may also be useful in sustainable energy: in 2022, researchers reported
3D-printed 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer c ...
nano-"skyscraper" electrodes – albeit micro-scale, the pillars had nano-features of porosity due to printed metal nanoparticle inks – (nanotechnology) that house cyanobacteria for extracting substantially more sustainable bioenergy from their photosynthesis (biotechnology) than in earlier studies.


Nanobiology

While nanobiology is in its infancy, there are a lot of promising methods that may rely on nanobiology in the future. Biological systems are inherently nano in scale; nanoscience must merge with biology in order to deliver biomacromolecules and molecular machines that are similar to nature. Controlling and mimicking the devices and processes that are constructed from molecules is a tremendous challenge to face for the converging disciplines of nanobiotechnology. All living things, including humans, can be considered to be nanofoundries. Natural evolution has optimized the "natural" form of nanobiology over millions of years. In the 21st century, humans have developed the technology to artificially tap into nanobiology. This process is best described as "organic merging with synthetic". Colonies of live neurons can live together on a
biochip In molecular biology, biochips are engineered substrates ("miniaturized laboratories") that can host large numbers of simultaneous biochemical reactions. One of the goals of biochip technology is to efficiently screen large numbers of biological a ...
device; according to research from Dr. Gunther Gross at the University of North Texas. Self-assembling nanotubes have the ability to be used as a structural system. They would be composed together with rhodopsins; which would facilitate the optical computing process and help with the storage of biological materials. DNA (as the software for all living things) can be used as a structural proteomic system – a logical component for molecular computing. Ned Seeman – a researcher at New York University – along with other researchers are currently researching concepts that are similar to each other.


Bionanotechnology


Distinction from nanobiotechnology

Broadly, bionanotechnology can be distinguished from nanobiotechnology in that it refers to nanotechnology that makes use of biological materials/components – it could in principle or does alternatively use abiotic components. It plays a smaller role in medicine (which is concerned with biological organisms). It makes use of natural or biomimetic systems or elements for unique nanoscale structures and various applications that may not be directionally associated with biology rather than mostly biological applications. In contrast, nanobiotechnology uses biotechnology miniaturized to nanometer size or incorporates nanomolecules into biological systems. In some future applications, both fields could be merged.


DNA

DNA nanotechnology DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of geneti ...
is one important example of bionanotechnology. The utilization of the inherent properties of nucleic acids like DNA to create useful materials or devices – such as
biosensor A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
s – is a promising area of modern research.
DNA digital data storage DNA digital data storage is the process of encoding and decoding binary data to and from synthesized strands of DNA. While DNA as a storage medium has enormous potential because of its high storage density, its practical use is currently severely ...
refers mostly to the use of synthesized but otherwise conventional strands of DNA to store digital data, which could be useful for e.g. high-density long-term data storage that isn't accessed and written to frequently as an alternative to 5D optical data storage or for use in combination with other nanobiotechnology.


Membrane materials

Another important area of research involves taking advantage of membrane properties to generate synthetic membranes. Proteins that
self-assemble Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
to generate functional materials could be used as a novel approach for the large-scale production of programmable nanomaterials. One example is the development of
amyloids Amyloids are aggregates of proteins characterised by a fibrillar morphology of 7–13 nm in diameter, a beta sheet (β-sheet) secondary structure (known as cross-β) and ability to be stained by particular dyes, such as Congo red. In the huma ...
found in bacterial
biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular p ...
s as engineered nanomaterials that can be programmed genetically to have different properties.


Lipid nanotechnology

Lipid nanotechnology is another major area of research in bionanotechnology, where physico-chemical properties of lipids such as their antifouling and self-assembly is exploited to build nanodevices with applications in medicine and engineering. Lipid nanotechnology approaches can also be used to develop next-generation emulsion methods to maximize both absorption of fat-soluble nutrients and the ability to incorporate them into popular beverages.


Computing

" Memristors" fabricated from protein nanowires of the bacterium ''
Geobacter sulfurreducens ''Geobacter sulfurreducens'' is a gram-negative metal and sulphur-reducing proteobacterium. It is rod-shaped, obligately anaerobic, non-fermentative, has flagellum and type four pili, and is closely related to ''Geobacter metallireducens''. ''G ...
'' which function at substantially lower voltages than previously described ones may allow the construction of artificial neurons which function at voltages of biological
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
s. The nanowires have a range of advantages over silicon nanowires and the memristors may be used to directly process biosensing signals, for neuromorphic computing (see also: wetware computer) and/or direct communication with biological neurons.


Other

Protein folding studies provide a third important avenue of research, but one that has been largely inhibited by our inability to predict protein folding with a sufficiently high degree of accuracy. Given the myriad uses that biological systems have for proteins, though, research into understanding protein folding is of high importance and could prove fruitful for bionanotechnology in the future.


Agriculture

In the agriculture industry, engineered nanoparticles have been serving as nano carriers, containing herbicides, chemicals, or genes, which target particular plant parts to release their content. Previously nanocapsules containing herbicides have been reported to effectively penetrate through cuticles and tissues, allowing the slow and constant release of the active substances. Likewise, other literature describes that nano-encapsulated slow release of fertilizers has also become a trend to save fertilizer consumption and to minimize environmental pollution through precision farming. These are only a few examples from numerous research works which might open up exciting opportunities for nanobiotechnology application in agriculture. Also, application of this kind of engineered nanoparticles to plants should be considered the level of amicability before it is employed in agriculture practices. Based on a thorough literature survey, it was understood that there is only limited authentic information available to explain the biological consequence of engineered nanoparticles on treated plants. Certain reports underline the phytotoxicity of various origin of engineered nanoparticles to the plant caused by the subject of concentrations and sizes . At the same time, however, an equal number of studies were reported with a positive outcome of nanoparticles, which facilitate growth promoting nature to treat plant. In particular, compared to other nanoparticles, silver and gold nanoparticles based applications elicited beneficial results on various plant species with less and/or no toxicity. Silver nanoparticles (AgNPs) treated leaves of Asparagus showed the increased content of ascorbate and chlorophyll. Similarly, AgNPs-treated common bean and corn has increased shoot and root length, leaf surface area, chlorophyll, carbohydrate and protein contents reported earlier. The gold nanoparticle has been used to induce growth and seed yield in Brassica juncea.


Tools

This field relies on a variety of research methods, including experimental tools (e.g. imaging, characterization via AFM/optical tweezers etc.), x-ray diffraction based tools, synthesis via self-assembly, characterization of self-assembly (using e.g. MP-SPR,
DPI A Daytona Prototype International (DPi) was a type of sports prototype racing car developed specifically for the International Motor Sports Association's WeatherTech SportsCar Championship, as their top class of car, acting as a direct replaceme ...
,
recombinant DNA Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination (such as molecular cloning) that bring together genetic material from multiple sources, creating sequences that would not otherwise be fou ...
methods, etc.), theory (e.g.
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic be ...
, nanomechanics, etc.), as well as computational approaches (bottom-up multi-scale simulation,
supercomputing A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second ( FLOPS) instead of million instruction ...
).


Risk management

As of 2009, the risks of nanobiotechnologies are poorly understood and in the U.S. there is no solid national consensus on what kind of regulatory policy principles should be followed. For example, nanobiotechnologies may have hard to control effects on the environment or ecosystems and human health. Bonin notes that "Nanotechnology is not a specific determinate homogenous entity, but a collection of diverse capabilities and applications" and that nanobiotechnology research and development is – as one of many fields – affected by
dual-use In politics, diplomacy and export control, dual-use items refers to goods, software and technology that can be used for both civilian and military applications.
problems.


See also

*
Biomimicry Biomimetics or biomimicry is the emulation of the models, systems, and elements of nature for the purpose of solving complex human problems. The terms "biomimetics" and "biomimicry" are derived from grc, βίος (''bios''), life, and μίμησ ...
*
Colloidal gold Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is usually either wine-red coloured (for spherical particles less than 100  nm) or blue/purple (for larger spherical particl ...
* Genome editing ( bacteria, ( micro-borgs)) *
Gold nanoparticle Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is usually either wine-red coloured (for spherical particles less than 100  nm) or blue/purple (for larger spherical particl ...
* Nanobiomechanics * Nanoparticle–biomolecule conjugate * Nanosubmarine *
Nanozymes An artificial enzyme is a synthetic organic molecule or ion that recreates one or more functions of an enzyme. It seeks to deliver catalysis at rates and selectivity observed in naturally occurring enzymes. History Enzyme catalysis of chemical r ...


References


External links


What is Bionanotechnology?
mdash;a video introduction to the field
Nanobiotechnology in Orthopaedic
{{Levels of technological manipulation of matter Nanotechnology Biotechnology