In
relativity and in
pseudo-Riemannian geometry, a null hypersurface is a
hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
whose
normal vector
In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the infinite straight line perpendicular to the tangent line to the cu ...
at every point is a
null vector
In mathematics, given a vector space ''X'' with an associated quadratic form ''q'', written , a null vector or isotropic vector is a non-zero element ''x'' of ''X'' for which .
In the theory of real bilinear forms, definite quadratic forms an ...
(has zero length with respect to the local
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
). A
light cone
In special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single Event (relativity), event (localized to a single point in space and a single moment in time) and traveling in all direct ...
is an example.
An alternative characterization is that the
tangent space
In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be ...
at every point of a
hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
contains a nonzero vector such that the metric applied to such a vector and any vector in the tangent space is zero. Another way of saying this is that the
pullback
In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward.
Precomposition
Precomposition with a function probably provides the most elementary notion of pullback: ...
of the metric onto the tangent space is degenerate.
For a Lorentzian metric, all the vectors in such a tangent space are space-like except in one direction, in which they are null. Physically, there is exactly one lightlike
worldline contained in a null hypersurface through each point that corresponds to the worldline of a particle moving at the speed of light, and no contained worldlines that are time-like. Examples of null hypersurfaces include a
light cone
In special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single Event (relativity), event (localized to a single point in space and a single moment in time) and traveling in all direct ...
, a
Killing horizon
In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hyp ...
, and the
event horizon
In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s.
In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive c ...
of a
black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
.
References
*.
*James B. Hartle, ''Gravity: an Introduction To Einstein's General Relativity''.
General relativity
Lorentzian manifolds
{{relativity-stub