Nomogram
   HOME

TheInfoList



OR:

A nomogram (), also called a nomograph, alignment chart, or abac, is a graphical calculating device, a two-dimensional diagram designed to allow the approximate graphical computation of a
mathematical function In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. ...
. The field of nomography was invented in 1884 by the French engineer Philbert Maurice d'Ocagne (1862–1938) and used extensively for many years to provide engineers with fast graphical calculations of complicated formulas to a practical precision. Nomograms use a parallel
coordinate system In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
invented by d'Ocagne rather than standard
Cartesian coordinates In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
. A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of n-1 variables, the value of the unknown variable can be found, or by fixing the values of some variables, the relationship between the unfixed ones can be studied. The result is obtained by laying a straightedge across the known values on the scales and reading the unknown value from where it crosses the scale for that variable. The virtual or drawn line created by the straightedge is called an ''index line'' or ''isopleth''. Nomograms flourished in many different contexts for roughly 75 years because they allowed quick and accurate computations before the age of pocket calculators. Results from a nomogram are obtained very quickly and reliably by simply drawing one or more lines. The user does not have to know how to solve algebraic equations, look up data in tables, use a
slide rule A slide rule is a hand-operated mechanical calculator consisting of slidable rulers for conducting mathematical operations such as multiplication, division, exponents, roots, logarithms, and trigonometry. It is one of the simplest analog ...
, or substitute numbers into equations to obtain results. The user does not even need to know the underlying equation the nomogram represents. In addition, nomograms naturally incorporate implicit or explicit
domain knowledge Domain knowledge is knowledge of a specific discipline or field in contrast to general (or domain-independent) knowledge. The term is often used in reference to a more general discipline—for example, in describing a software engineer who has ge ...
into their design. For example, to create larger nomograms for greater accuracy the nomographer usually includes only scale ranges that are reasonable and of interest to the problem. Many nomograms include other useful markings such as reference labels and colored regions. All of these provide useful guideposts to the user. Like a slide rule, a nomogram is a graphical analog computation device. Also like a slide rule, its accuracy is limited by the precision with which physical markings can be drawn, reproduced, viewed, and aligned. Unlike the slide rule, which is a general-purpose computation device, a nomogram is designed to perform a specific calculation with tables of values built into the device's
scales Scale or scales may refer to: Mathematics * Scale (descriptive set theory), an object defined on a set of points * Scale (ratio), the ratio of a linear dimension of a model to the corresponding dimension of the original * Scale factor, a number ...
. Nomograms are typically used in applications for which the level of accuracy they provide is sufficient and useful. Alternatively, a nomogram can be used to check an answer obtained by a more exact but error-prone calculation. Other types of graphical calculators—such as intercept charts, trilinear diagrams, and hexagonal charts—are sometimes called nomograms. These devices do not meet the definition of a nomogram as a graphical calculator whose solution is found by the use of one or more linear isopleths.


Description

A nomogram for a three-variable equation typically has three scales, although there exist nomograms in which two or even all three scales are common. Here two scales represent known values and the third is the scale where the result is read off. The simplest such equation is ''u''1 + ''u''2 + ''u''3 = 0 for the three variables ''u''1, ''u''2 and ''u''3. An example of this type of nomogram is shown on the right, annotated with terms used to describe the parts of a nomogram. More complicated equations can sometimes be expressed as the sum of functions of the three variables. For example, the nomogram at the top of this article could be constructed as a parallel-scale nomogram because it can be expressed as such a sum after taking logarithms of both sides of the equation. The scale for the unknown variable can lie between the other two scales or outside of them. The known values of the calculation are marked on the scales for those variables, and a line is drawn between these marks. The result is read off the unknown scale at the point where the line intersects that scale. The scales include 'tick marks' to indicate exact number locations, and they may also include labeled reference values. These scales may be
linear In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a '' function'' (or '' mapping''); * linearity of a '' polynomial''. An example of a linear function is the function defined by f(x) ...
, logarithmic, or have some more complex relationship. The sample isopleth shown in red on the nomogram at the top of this article calculates the value of ''T'' when ''S'' = 7.30 and ''R'' = 1.17. The isopleth crosses the scale for ''T'' at just under 4.65; a larger figure printed in high resolution on paper would yield ''T'' = 4.64 to three-digit precision. Note that any variable can be calculated from values of the other two, a feature of nomograms that is particularly useful for equations in which a variable cannot be algebraically isolated from the other variables. Straight scales are useful for relatively simple calculations, but for more complex calculations the use of simple or elaborate curved scales may be required. Nomograms for more than three variables can be constructed by incorporating a grid of scales for two of the variables, or by concatenating individual nomograms of fewer numbers of variables into a compound nomogram.


Applications

Nomograms have been used in an extensive array of applications. A sample includes: * The original application by d'Ocagne, the automation of complicated
cut and fill In earthmoving, cut and fill is the process of constructing a railway, road or canal whereby the amount of material from cuts roughly matches the amount of fill needed to make nearby embankments to minimize the amount of construction labor. ...
calculations for earth removal during the construction of the French national railway system. This was an important proof of concept, because the calculations are non-trivial and the results translated into significant savings of time, effort, and money. * The design of channels, pipes and wires for regulating the flow of water. * The work of Lawrence Henderson, in which nomograms were used to correlate many different aspects of blood physiology. It was the first major use of nomograms in the United States and also the first medical nomograms anywhere. * Medical fields, such as pharmacy and oncology. * Ballistics calculations prior to fire control systems, where calculating time was critical. * Machine shop calculations, to convert blueprint dimensions and perform calculations based on material dimensions and properties. These nomograms often included markings for standard dimensions and for available manufactured parts. * Statistics, for complicated calculations of properties of distributions and for operations research including the design of acceptance tests for quality control. * Operations Research, to obtain results in a variety of optimization problems. * Chemistry and chemical engineering, to encapsulate both general physical relationships and empirical data for specific compounds. * Aeronautics, in which nomograms were used for decades in the cockpits of aircraft of all descriptions. As a navigation and flight control aid, nomograms were fast, compact and easy-to-use calculators. * Astronomical calculations, as in the post-launch orbital calculations of
Sputnik 1 Sputnik 1 (, , ''Satellite 1''), sometimes referred to as simply Sputnik, was the first artificial Earth satellite. It was launched into an elliptical low Earth orbit by the Soviet Union on 4 October 1957 as part of the Soviet space program ...
by P. E. Elyasberg. * Engineering work of all kinds: Electrical design of filters and transmission lines, mechanical calculations of stress and loading, optical calculations, and so forth. * Military, where complex calculations need to be made in the field quickly and with reliability not dependent on electrical devices. *
Seismology Seismology (; from Ancient Greek σεισμός (''seismós'') meaning "earthquake" and -λογία (''-logía'') meaning "study of") is the scientific study of earthquakes (or generally, quakes) and the generation and propagation of elastic ...
, where nomograms have been developed to estimate earthquak
magnitude
and to present results of probabilistic
seismic hazard A seismic hazard is the probability that an earthquake will occur in a given geographic area, within a given window of time, and with ground motion intensity exceeding a given threshold. With a hazard thus estimated, risk can be assessed and inc ...
analyses


Examples


Parallel-resistance/thin-lens

The nomogram below performs the computation: f(A,B)=\frac=\frac This nomogram is interesting because it performs a useful nonlinear calculation using only straight-line, equally graduated scales. While the diagonal line has a scale \sqrt times larger than the axes scales, the numbers on it exactly match those directly below or to its left, and thus it can be easily created by drawing a straight line diagonally on a sheet of
graph paper Graph paper, coordinate paper, grid paper, or squared paper is writing paper that is printed with fine lines making up a regular grid. It is available either as loose leaf paper or bound in notebooks or graph books. It is commonly found in mathe ...
. ''A'' and ''B'' are entered on the horizontal and vertical scales, and the result is read from the diagonal scale. Being proportional to the
harmonic mean In mathematics, the harmonic mean is a kind of average, one of the Pythagorean means. It is the most appropriate average for ratios and rate (mathematics), rates such as speeds, and is normally only used for positive arguments. The harmonic mean ...
of ''A'' and ''B'', this formula has several applications. For example, it is the parallel-resistance formula in
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
, and the thin-lens equation in
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
. In the example, the red line demonstrates that parallel resistors of 56 and 42 
ohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (1 ...
s have a combined resistance of 24 ohms. It also demonstrates that an object at a distance of 56 cm from a
lens A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements'') ...
whose
focal length The focal length of an Optics, optical system is a measure of how strongly the system converges or diverges light; it is the Multiplicative inverse, inverse of the system's optical power. A positive focal length indicates that a system Converge ...
is 24 cm forms a
real image {{citations needed, date=June 2019 In optics, an ''image'' is defined as the collection of focus points of light rays coming from an object. A real image is the collection of focus points actually made by converging/diverging rays, while a ...
at a distance of 42 cm.


Chi-squared test computation

The nomogram below can be used to perform an approximate computation of some values needed when performing a familiar statistical test,
Pearson's chi-squared test Pearson's chi-squared test or Pearson's \chi^2 test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squa ...
. This nomogram demonstrates the use of curved scales with unevenly spaced graduations. The relevant expression is: \frac The scale along the top is shared among five different ranges of observed values: A, B, C, D and E. The observed value is found in one of these ranges, and the tick mark used on that scale is found immediately above it. Then the curved scale used for the expected value is selected based on the range. For example, an observed value of 9 would use the tick mark above the 9 in range A, and curved scale A would be used for the expected value. An observed value of 81 would use the tick mark above 81 in range E, and curved scale E would be used for the expected value. This allows five different nomograms to be incorporated into a single diagram. In this manner, the blue line demonstrates the computation of: (9 − 5)2 / 5 = 3.2 and the red line demonstrates the computation of: (81 − 70)2 / 70 = 1.7 In performing the test, Yates's correction for continuity is often applied, and simply involves subtracting 0.5 from the observed values. A nomogram for performing the test with Yates's correction could be constructed simply by shifting each "observed" scale half a unit to the left, so that the 1.0, 2.0, 3.0, ... graduations are placed where the values 0.5, 1.5, 2.5, ... appear on the present chart.


Food risk assessment

Although nomograms represent mathematical relationships, not all are mathematically derived. The following one was developed graphically to achieve appropriate end results that could readily be defined by the product of their relationships in subjective units rather than numerically. The use of non-parallel axes enabled the non-linear relationships to be incorporated into the model. The numbers in square boxes denote the axes requiring input after appropriate assessment. The pair of nomograms at the top of the image determine the probability of occurrence and the availability, which are then incorporated into the bottom multistage nomogram. Lines 8 and 10 are 'tie lines' or 'pivot lines' and are used for the transition between the stages of the compound nomogram. The final pair of parallel logarithmic scales (12) are not nomograms as such, but reading-off scales to translate the risk score (11, remote to extremely high) into a sampling frequency to address safety aspects and other 'consumer protection' aspects respectively. This stage requires political 'buy in' balancing cost against risk. The example uses a three-year minimum frequency for each, though with the high risk end of the scales different for the two aspects, giving different frequencies for the two, but both subject to an overall minimum sampling of every food for all aspects at least once every three years. This
risk assessment Risk assessment is a process for identifying hazards, potential (future) events which may negatively impact on individuals, assets, and/or the environment because of those hazards, their likelihood and consequences, and actions which can mitigate ...
nomogram was developed by the UK Public Analyst Service with funding from the
UK Food Standards Agency The Food Standards Agency is a non-ministerial government department of the Government of the United Kingdom. It is responsible for protecting public health in relation to food in England, Wales and Northern Ireland. It is led by a board appoin ...
for use as a tool to guide the appropriate frequency of sampling and analysis of food for official food control purposes, intended to be used to assess all potential problems with all foods, although not yet adopted.


Other quick nomograms

Using a ruler, one can readily read the missing term of the
law of sines In trigonometry, the law of sines (sometimes called the sine formula or sine rule) is a mathematical equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, \frac \,=\, \frac \,=\, \frac \,=\ ...
or the roots of the quadratic and
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
equation. File:SinT-nomogram-.gif, Nomogram for the law of sines File:Nomogram-mf-egy-jav.gif, Nomogram for solving the quadratric x^2+px+q=0 File:Nomogram-BR-x3-1.png, Nomogram for solving the cubic x^3+px+q=0


See also

*
Cartogram A cartogram (also called a value-area map or an anamorphic map, the latter common among German-speakers) is a thematic map of a set of features (countries, provinces, etc.), in which their geographic size is altered to be Proportionality (math ...
* Hilbert's thirteenth problem * Kolmogorov–Arnold representation theorem *
Load line (electronics) In graphical analysis of nonlinear electronic circuits, a load line is a line drawn on the current–voltage characteristic graph for a nonlinear device like a diode or transistor. It represents the constraint put on the voltage and current in t ...
* Log-log graph *
Semilog graph In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale. It is useful for data with exponential curve, exponential relationships, where one variable (mathem ...


References


Further reading

* D. P. Adams, ''Nomography: Theory and Application'', (Archon Books) 1964. * H. J. Allcock, J. Reginald Jones, and J. G. L. Michel
''The Nomogram. The Theory and Practical Construction of Computation Charts''
5th ed., (London: Sir Isaac Pitman & Sons, Ltd.) 1963.
1st edition 1932
* S. Brodestsky, ''A First Course in Nomography'', (London, G. Bell and Sons) 1920. * D. S. Davis, ''Empirical Equations and Nomography'', (New York: McGraw-Hill Book Co.) 1943. * M. d'Ocagne: ''Traité de Nomographie'', (Gauthier-Villars, Paris) 1899. * M. d'Ocagne: (1900) ''Sur la résolution nomographique de l'équation du septième degré''. Comptes rendus (Paris), 131, 522–524. * R. D. Douglass and D. P. Adams, ''Elements of Nomography'', (New York: McGraw-Hill) 1947. * R. P. Hoelscher, et al., ''Graphic Aids in Engineering Computation'', (New York: McGraw-Hill) 1952. * L. Ivan Epstein, ''Nomography'', (New York: Interscience Publishers) 1958. * L. H. Johnson, ''Nomography and Empirical Equations'', (New York: John Wiley and Sons) 1952. * M. Kattan and J. Marasco. (2010) ''What Is a Real Nomogram?'', Seminars in oncology, 37(1), 23–26. * A. S. Levens, ''Nomography'', 2nd ed., (New York: John Wiley & Sons, Inc.) 1959. * F. T. Mavis, ''The Construction of Nomographic Charts'', (Scranton, International Textbook) 1939. * E. Otto, ''Nomography'',(New York: The Macmillan Company) 1963. * H. A. Evesham ''The History and Development of Nomography'', (Boston: Docent Press) 2010. * T. H. Gronwall, R. Doerfler, A. Gluchoff, and S. Guthery, ''Calculating Curves: The Mathematics, History, and Aesthetic Appeal of T. H. Gronwall's Nomographic Work'', (Boston: Docent Press) 2012.


External links


The Art of Nomography
describes the design of nomograms using geometry, determinants, and transformations.
The Lost Art of Nomography
is a math journal article surveying the field of nomography.

but also of general interest.
PyNomo
– open source software for constructing nomograms.

for constructing simple nomograms.
Nomograms for visualising relationships between three variables
- video and slides of invited talk by Jonathan Rougier for useR!2011. {{Authority control Charts Analog computers Mathematical tools Theory of computation Diagrams