Naturally occurring
niobium
Niobium is a chemical element; it has chemical symbol, symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and Ductility, ductile transition metal. Pure niobium has a Mohs scale of mineral hardness, Mohs h ...
(
41Nb) is composed of one
stable
A stable is a building in which working animals are kept, especially horses or oxen. The building is usually divided into stalls, and may include storage for equipment and feed.
Styles
There are many different types of stables in use tod ...
isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
(
93Nb). The most stable
radioisotope
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
is
92Nb with a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay.
Half-life, half life or halflife may also refer to:
Film
* Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang
* ''Half Life: ...
of 34.7 million years. The next longest-lived niobium isotopes are
94Nb (half-life: 20,300 years) and
91Nb with a half-life of 680 years. There is also a
meta state
A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). "Metastable" describes nuclei whose excited states have half-lives of 10−9 s ...
of
93Nb at 31
keV
In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When us ...
whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except
95Nb (35 days),
96Nb (23.4 hours) and
90Nb (14.6 hours). The primary
decay mode
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
before stable
93Nb is
electron capture
Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
and the primary mode after is
beta emission
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron t ...
with some
neutron emission
Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a Atomic nucleus, nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photodisin ...
occurring in
104–110Nb.
Only
95Nb (35 days) and
97Nb (72 minutes) and heavier isotopes (half-lives in seconds) are
fission products
Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
in significant quantity, as the other isotopes are shadowed by stable or very long-lived (
93Zr) isotopes of the preceding element
zirconium
Zirconium is a chemical element; it has Symbol (chemistry), symbol Zr and atomic number 40. First identified in 1789, isolated in impure form in 1824, and manufactured at scale by 1925, pure zirconium is a lustrous transition metal with a greyis ...
from production via
beta decay
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
of neutron-rich
fission fragments.
95Nb is the
decay product
In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
of
95Zr (64 days), so disappearance of
95Nb in
used nuclear fuel
Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
is slower than would be expected from its own 35-day half-life alone. Small amounts of other isotopes may be produced as direct fission products.
List of isotopes
, -id=Niobium-82
,
82Nb
, style="text-align:right" , 41
, style="text-align:right" , 41
, 81.94438(32)
, 51(5) ms
,
β+
,
82Zr
, (0+)
,
, -id=Niobium-82m
, style="text-indent:1em" ,
82mNb
, colspan="3" style="text-indent:2em" , 1180(1) keV
, 93(20) ns
,
IT
,
82Nb
, (5+)
,
, -id=Niobium-83
,
83Nb
, style="text-align:right" , 41
, style="text-align:right" , 42
, 82.93815(17)
, 3.9(2) s
, β
+
,
83Zr
, 9/2+#
,
, -id=Niobium-84
,
84Nb
, style="text-align:right" , 41
, style="text-align:right" , 43
, 83.93430571(43)
, 9.8(9) s
, β
+
,
84Zr
, (1+)
,
, -id=Niobium-84m1
, style="text-indent:1em" ,
84m1Nb
, colspan="3" style="text-indent:2em" , 48(1) keV
, 176(46) ns
, IT
,
84Nb
, (3+)
,
, -id=Niobium-84m2
, style="text-indent:1em" ,
84m2Nb
, colspan="3" style="text-indent:2em" , 337.7(4) keV
, 92(5) ns
, IT
,
84Nb
, (5−)
,
, -id=Niobium-85
,
85Nb
, style="text-align:right" , 41
, style="text-align:right" , 44
, 84.9288458(44)
, 20.5(7) s
, β
+
,
85Zr
, 9/2+#
,
, -id=Niobium-85m
, rowspan=2 style="text-indent:1em" ,
85mNb
, rowspan=2 colspan="3" style="text-indent:2em" , 150(80)# keV
, rowspan=2, 3.3(9) s
, IT (?%)
,
85Nb
, rowspan=2, (1/2−)
, rowspan=2,
, -
, β
+ (?%)
,
85Zr
, -id=Niobium-86
,
86Nb
, style="text-align:right" , 41
, style="text-align:right" , 45
, 85.9257815(59)
, 88(1) s
, β
+
,
86Zr
, (6+)
,
, -id=Niobium-86m
, style="text-indent:1em" ,
86mNb
[Order of ground state and isomer is uncertain.]
, colspan="3" style="text-indent:2em" , 150(100)# keV
, 20# s
, β
+
,
86Zr
, (0−,1−,2−)
,
, -id=Niobium-87
,
87Nb
, style="text-align:right" , 41
, style="text-align:right" , 46
, 86.9206925(73)
, 3.7(1) min
, β
+
,
87Zr
, (1/2)−
,
, -id=Niobium-87m
, style="text-indent:1em" ,
87mNb
, colspan="3" style="text-indent:2em" , 3.9(1) keV
, 2.6(1) min
, β
+
,
87Zr
, (9/2)+
,
, -id=Niobium-88
,
88Nb
, style="text-align:right" , 41
, style="text-align:right" , 47
, 87.918226(62)
, 14.50(11) min
, β
+
,
88Zr
, (8+)
,
, -id=Niobium-88m
, style="text-indent:1em" ,
88mNb
, colspan="3" style="text-indent:2em" , 130(120) keV
, 7.7(1) min
, β
+
,
88Zr
, (4−)
,
, -id=Niobium-89
,
89Nb
, style="text-align:right" , 41
, style="text-align:right" , 48
, 88.913445(25)
, 2.03(7) h
, β
+
,
89Zr
, (9/2+)
,
, -id=Niobium-89m
, style="text-indent:1em" ,
89mNb
, colspan="3" style="text-indent:2em" , 0(30)# keV
, 1.10(3) h
, β
+
,
89Zr
, (1/2)−
,
, -id=Niobium-90
,
90Nb
, style="text-align:right" , 41
, style="text-align:right" , 49
, 89.9112592(36)
, 14.60(5) h
, β
+
,
90Zr
, 8+
,
, -id=Niobium-90m1
, style="text-indent:1em" ,
90m1Nb
, colspan="3" style="text-indent:2em" , 122.370(22) keV
, 63(2) μs
, IT
,
90Nb
, 6+
,
, -id=Niobium-90m2
, style="text-indent:1em" ,
90m2Nb
, colspan="3" style="text-indent:2em" , 124.67(25) keV
, 18.81(6) s
, IT
,
90Nb
, 4-
,
, -id=Niobium-90m3
, style="text-indent:1em" ,
90m3Nb
, colspan="3" style="text-indent:2em" , 171.10(10) keV
, <1 μs
, IT
,
90Nb
, 7+
,
, -id=Niobium-90m4
, style="text-indent:1em" ,
90m4Nb
, colspan="3" style="text-indent:2em" , 382.01(25) keV
, 6.19(8) ms
, IT
,
90m1Nb
, 1+
,
, -id=Niobium-90m5
, style="text-indent:1em" ,
90m5Nb
, colspan="3" style="text-indent:2em" , 1880.21(20) keV
, 471(6) ns
, IT
,
90Nb
, (11−)
,
, -id=Niobium-91
, rowspan=2,
91Nb
, rowspan=2 style="text-align:right" , 41
, rowspan=2 style="text-align:right" , 50
, rowspan=2, 90.9069903(31)
, rowspan=2, 680(130) y
,
EC (99.99%)
, rowspan=2,
91Zr
, rowspan=2, 9/2+
, rowspan=2,
, -
, β
+ (0.0138%)
, -id=Niobium-91m1
, rowspan=3 style="text-indent:1em" ,
91m1Nb
, rowspan=3 colspan="3" style="text-indent:2em" , 104.60(5) keV
, rowspan=3, 60.86(22) d
, IT (96.6%)
,
91Nb
, rowspan=3, 1/2−
, rowspan=3,
, -
, EC (3.4%)
, rowspan=2,
91Zr
, -
, β
+ (.0028%)
, -id=Niobium-91m2
, style="text-indent:1em" ,
91m2Nb
, colspan="3" style="text-indent:2em" , 2034.42(20) keV
, 3.76(12) μs
, IT
,
91Nb
, (17/2−)
,
, -
,
92Nb
, style="text-align:right" , 41
, style="text-align:right" , 51
, 91.9071886(19)
, 3.47(24)×10
7 y
, β
+
,
92Zr
, 7+
, Trace
, -id=Niobium-92m1
, style="text-indent:1em" ,
92m1Nb
, colspan="3" style="text-indent:2em" , 135.5(4) keV
, 10.116(13) d
, β
+
,
92Zr
, (2)+
,
, -id=Niobium-92m2
, style="text-indent:1em" ,
92m2Nb
, colspan="3" style="text-indent:2em" , 225.8(4) keV
, 5.9(2) μs
, IT
,
92Nb
, (2)−
,
, -id=Niobium-92m3
, style="text-indent:1em" ,
92m3Nb
, colspan="3" style="text-indent:2em" , 2203.3(4) keV
, 167(4) ns
, IT
,
92Nb
, (11−)
,
, -id=Niobium-93
,
93Nb
, style="text-align:right" , 41
, style="text-align:right" , 52
, 92.9063732(16)
, colspan=3 align=center, Stable
, 9/2+
, 1.0000
, -id=Niobium-93m1
, style="text-indent:1em" ,
93m1Nb
, colspan="3" style="text-indent:2em" , 30.760(5) keV
, 16.12(12) y
, IT
,
93Nb
, 1/2−
,
, -id=Niobium-93m2
, style="text-indent:1em" ,
93m2Nb
, colspan="3" style="text-indent:2em" , 7460(17) keV
, 1.5(5) μs
, IT
,
93Nb
, 33/2−#
,
, -id=Niobium-94
,
94Nb
, style="text-align:right" , 41
, style="text-align:right" , 53
, 93.9072790(16)
, 2.04(4)×10
4 y
, β
−
,
94Mo
, 6+
, Trace
, -id=Niobium-94m
, rowspan=2 style="text-indent:1em" ,
94mNb
, rowspan=2 colspan="3" style="text-indent:2em" , 40.892(12) keV
, rowspan=2, 6.263(4) min
, IT (99.50%)
,
94Nb
, rowspan=2, 3+
, rowspan=2,
, -
, β
− (0.50%)
,
94Mo
, -id=Niobium-95
,
95Nb
Fission product
Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
, style="text-align:right" , 41
, style="text-align:right" , 54
, 94.90683111(55)
, 34.991(6) d
, β
−
,
95Mo
, 9/2+
,
, -id=Niobium-95m
, rowspan=2 style="text-indent:1em" ,
95mNb
, rowspan=2 colspan="3" style="text-indent:2em" , 235.69(2) keV
, rowspan=2, 3.61(3) d
, IT (94.4%)
,
95Nb
, rowspan=2, 1/2−
, rowspan=2,
, -
, β
− (5.6%)
,
95Mo
, -id=Niobium-96
,
96Nb
, style="text-align:right" , 41
, style="text-align:right" , 55
, 95.90810159(16)
, 23.35(5) h
, β
−
,
96Mo
, 6+
,
, -id=Niobium-97
,
97Nb
, style="text-align:right" , 41
, style="text-align:right" , 56
, 96.9081016(46)
, 72.1(7) min
, β
−
,
97Mo
, 9/2+
,
, -id=Niobium-97m
, style="text-indent:1em" ,
97mNb
, colspan="3" style="text-indent:2em" , 743.35(3) keV
, 58.7(18) s
, IT
,
97Nb
, 1/2−
,
, -id=Niobium-98
,
98Nb
, style="text-align:right" , 41
, style="text-align:right" , 57
, 97.9103326(54)
, 2.86(6) s
, β
−
,
98Mo
, 1+
,
, -id=Niobium-98m
, style="text-indent:1em" ,
98mNb
, colspan="3" style="text-indent:2em" , 84(4) keV
, 51.1(4) min
, β
−
,
98Mo
, (5)+
,
, -id=Niobium-99
,
99Nb
, style="text-align:right" , 41
, style="text-align:right" , 58
, 98.911609(13)
, 15.0(2) s
, β
−
,
99Mo
, 9/2+
,
, -id=Niobium-99m
, rowspan=2 style="text-indent:1em" ,
99mNb
, rowspan=2 colspan="3" style="text-indent:2em" , 365.27(8) keV
, rowspan=2, 2.5(2) min
, β
− (?%)
,
99Mo
, rowspan=2, 1/2−
, rowspan=2,
, -
, IT (?%)
,
99Nb
, -id=Niobium-100
,
100Nb
, style="text-align:right" , 41
, style="text-align:right" , 59
, 99.9143406(86)
, 1.5(2) s
, β
−
, ''
100Mo''
, 1+
,
, -id=Niobium-100m1
, style="text-indent:1em" ,
100m1Nb
, colspan="3" style="text-indent:2em" , 313(8) keV
, 2.99(11) s
, β
−
, ''
100Mo''
, (5+)
,
, -id=Niobium-100m2
, style="text-indent:1em" ,
100m2Nb
, colspan="3" style="text-indent:2em" , 347(8) keV
, 460(60) ns
, IT
,
100Nb
, (4−,5−)
,
, -id=Niobium-100m3
, style="text-indent:1em" ,
100m3Nb
, colspan="3" style="text-indent:2em" , 734(8) keV
, 12.43(26) μs
, IT
,
100Nb
, (8−)
,
, -id=Niobium-101
,
101Nb
, style="text-align:right" , 41
, style="text-align:right" , 60
, 100.9153065(40)
, 7.1(3) s
, β
−
,
101Mo
, 5/2+
,
, -id=Niobium-102
,
102Nb
, style="text-align:right" , 41
, style="text-align:right" , 61
, 101.9180904(27)
, 4.3(4) s
, β
−
,
102Mo
, (4+)
,
, -id=Niobium-102m
, style="text-indent:1em" ,
102mNb
, colspan="3" style="text-indent:2em" , 94(7) keV
, 1.31(16) s
, β
−
,
102Mo
, (1+)
,
, -id=Niobium-103
,
103Nb
, style="text-align:right" , 41
, style="text-align:right" , 62
, 102.9194534(42)
, 1.34(7) s
, β
−
,
103Mo
, 5/2+
,
, -id=Niobium-104
, rowspan=2,
104Nb
, rowspan=2 style="text-align:right" , 41
, rowspan=2 style="text-align:right" , 63
, rowspan=2, 103.9229077(19)
, rowspan=2, 0.98(5) s
, β
− (99.95%)
,
104Mo
, rowspan=2, (1+)
, rowspan=2,
, -
, β
−,
n (0.05%)
,
103Mo
, -id=Niobium-104m
, rowspan=2 style="text-indent:1em" ,
104mNb
, rowspan=2 colspan="3" style="text-indent:2em" , 9.8(26) keV
, rowspan=2, 4.9(3) s
, β
− (99.94%)
,
104Mo
, rowspan=2, (0−,1−)
, rowspan=2,
, -
, β
−, n (0.06%)
,
103Mo
, -id=Niobium-105
, rowspan=2,
105Nb
, rowspan=2 style="text-align:right" , 41
, rowspan=2 style="text-align:right" , 64
, rowspan=2, 104.9249426(43)
, rowspan=2, 2.91(5) s
, β
− (98.3%)
,
105Mo
, rowspan=2, (5/2+)
, rowspan=2,
, -
, β
−, n (1.7%)
,
104Mo
, -id=Niobium-106
, rowspan=2,
106Nb
, rowspan=2 style="text-align:right" , 41
, rowspan=2 style="text-align:right" , 65
, rowspan=2, 105.9289285(15)
, rowspan=2, 900(20) ms
, β
− (95.5%)
,
106Mo
, rowspan=2, 1−#
, rowspan=2,
, -
, β
−, n (4.5%)
,
105Mo
, -id=Niobium-106m1
, style="text-indent:1em" ,
106m1Nb
, colspan="3" style="text-indent:2em" , 100(50)# keV
, 1.20(6) s
, β
−
,
106Mo
, (4−)
,
, -id=Niobium-106m2
, style="text-indent:1em" ,
106m2Nb
, colspan="3" style="text-indent:2em" , 204.8(5) keV
, 820(38) ns
, IT
,
106Nb
, (3+)
,
, -id=Niobium-107
, rowspan=2,
107Nb
, rowspan=2 style="text-align:right" , 41
, rowspan=2 style="text-align:right" , 66
, rowspan=2, 106.9315897(86)
, rowspan=2, 286(8) ms
, β
− (92.6%)
,
107Mo
, rowspan=2, (5/2+)
, rowspan=2,
, -
, β
−, n (7.4%)
,
106Mo
, -id=Niobium-108
, rowspan=2,
108Nb
, rowspan=2 style="text-align:right" , 41
, rowspan=2 style="text-align:right" , 67
, rowspan=2, 107.9360756(88)
, rowspan=2, 201(4) ms
, β
− (93.7%)
,
108Mo
, rowspan=2, (2+)
, rowspan=2,
, -
, β
−, n (6.3%)
,
107Mo
, -id=Niobium-108m
, style="text-indent:1em" ,
108mNb
, colspan="3" style="text-indent:2em" , 166.6(5) keV
, 109(2) ns
, IT
,
108Nb
, 6−#
,
, -id=Niobium-109
, rowspan=2,
109Nb
, rowspan=2 style="text-align:right" , 41
, rowspan=2 style="text-align:right" , 68
, rowspan=2, 108.93914(46)
, rowspan=2, 106.9(49) ms
, β
− (69%)
,
109Mo
, rowspan=2, 3/2−#
, rowspan=2,
, -
, β
−, n (31%)
,
108Mo
, -id=Niobium-109m
, style="text-indent:1em" ,
109mNb
, colspan="3" style="text-indent:2em" , 312.5(4) keV
, 115(8) ns
, IT
,
109Nb
, 7/2+#
,
, -id=Niobium-110
, rowspan=2,
110Nb
, rowspan=2 style="text-align:right" , 41
, rowspan=2 style="text-align:right" , 69
, rowspan=2, 109.94384(90)
, rowspan=2, 75(1) ms
, β
− (60%)
,
110Mo
, rowspan=2, 5+#
, rowspan=2,
, -
, β
−, n (40%)
,
109Mo
, -id=Niobium-110m
, rowspan=2 style="text-indent:1em" ,
110mNb
, rowspan=2 colspan="3" style="text-indent:2em" , 100(50)# keV
, rowspan=2, 94(9) ms
, β
− (60%)
,
110Mo
, rowspan=2, 2+#
, rowspan=2,
, -
, β
−, n (40%)
,
109Mo
, -id=Niobium-111
,
111Nb
, style="text-align:right" , 41
, style="text-align:right" , 70
, 110.94744(32)#
, 54(2) ms
, β
−
,
111Mo
, 3/2−#
,
, -id=Niobium-112
,
112Nb
, style="text-align:right" , 41
, style="text-align:right" , 71
, 111.95269(32)#
, 38(2) ms
, β
−
,
112Mo
, 1+#
,
, -id=Niobium-113
,
113Nb
, style="text-align:right" , 41
, style="text-align:right" , 72
, 112.95683(43)#
, 32(4) ms
, β
−
,
113Mo
, 3/2−#
,
, -id=Niobium-114
,
114Nb
, style="text-align:right" , 41
, style="text-align:right" , 73
, 113.96247(54)#
, 17(5) ms
, β
−
,
114Mo
, 2−#
,
, -id=Niobium-115
,
115Nb
, style="text-align:right" , 41
, style="text-align:right" , 74
, 114.96685(54)#
, 23(8) ms
, β
−
,
115Mo
, 3/2−#
,
, -id=Niobium-116
,
116Nb
, style="text-align:right" , 41
, style="text-align:right" , 75
, 115.97291(32)#
, 12# ms
550 ns,
,
, 1−#
,
, -id=Niobium-117
,
117Nb
, style="text-align:right" , 41
, style="text-align:right" , 76
,
,
,
,
,
,
Niobium-92
Niobium-92 is an
extinct radionuclide
An extinct radionuclide is a radionuclide that was formed by nucleosynthesis before the formation of the Solar System, about 4.6 billion years ago, but has since decayed to virtually zero abundance and is no longer detectable as a primordial nu ...
with a half-life of 34.7 million years, decaying predominantly via β
+ decay. Its abundance relative to the stable
93Nb in the early Solar System, estimated at 1.7×10
−5, has been measured to investigate the origin of
p-nuclei
p-nuclei (''p'' stands for proton-rich) are certain proton-rich, naturally occurring isotopes of some elements between selenium and mercury inclusive which cannot be produced in either the s- or the r-process.
Definition
The classical, gro ...
.
A higher initial abundance of
92Nb has been estimated for material in the outer protosolar disk (sampled from the meteorite NWA 6704), suggesting that this nuclide was predominantly formed via the
gamma process
A gamma process, also called the ''Moran-Gamma subordinator'', is a two-parameter stochastic process which models the accumulation of ''effort'' or ''wear'' over time. The gamma process has independent and stationary increments which follow the ...
(
photodisintegration
Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. The ...
) in a nearby
core-collapse supernova
A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original obj ...
.
Niobium-92, along with niobium-94, has been detected in refined samples of terrestrial niobium and may originate from bombardment by
cosmic ray
Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
muon
A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of ''ħ'', but with a much greater mass. It is classified as a ...
s in Earth's crust.
See also
Daughter products other than niobium
*
Isotopes of molybdenum
Molybdenum (42Mo) has 39 known isotopes, ranging in atomic mass from 81 to 119, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. All unstable isotopes of molybdenum ...
*
Isotopes of zirconium
Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed h ...
References
* Isotope masses from:
**
* Isotopic compositions and standard atomic masses from:
**
**
* Half-life, spin, and isomer data selected from the following sources.
**
**
**
{{Authority control
Niobium
Niobium
Niobium is a chemical element; it has chemical symbol, symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and Ductility, ductile transition metal. Pure niobium has a Mohs scale of mineral hardness, Mohs h ...