Newtonmeter
   HOME

TheInfoList



OR:

A force gauge (also called a force meter) is a
measuring instrument Instrumentation is a collective term for measuring instruments, used for indicating, measuring, and recording physical quantities. It is also a field of study about the art and science about making measurement instruments, involving the related ...
used to measure
forces In physics, a force is an influence that can cause an object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the magnitude and directi ...
. Applications exist in research and development, laboratory, quality, production and field environment. There are two kinds of force gauges today: mechanical and digital force gauges. Force Gauges usually measure
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
in stress increments and other dependent human factors.


Mechanical force gauges

A common mechanical force scale, known as the
spring scale A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale. It consists of a Spring (device), spring fixed at one end with a hook to attach an object at the other. It works in accordance with Hooke's law ...
, features a hook and a spring that attach to an object and measure the amount of force exerted on the spring in order to extend it.


Electrical gauge

An example of an electrical force gauge is an "electronic scale". One or more electrical
load cell A load cell converts a force such as tension, compression, pressure, or torque into a signal (electrical, pneumatic or hydraulic pressure, or mechanical displacement indicator) that can be measured and standardized. It is a force transducer. As t ...
s (commonly referred to as "weigh bars") are used to support a vertical or horizontal "live load" and are solid-state potentiometers which have variable internal resistance proportional to the load they are subjected to and deflected by. As the load and deflection increase, the internal current path circuit which the "supply voltage" from the "scale head" control/display unit must travel increases in length and resistance. At "no load" the resistance and resulting voltage drop are near "zero" and the "signal voltage" returning from the cell to the "scale head" is at or near "supply voltage" sent to it. As load is added and deflection increases, the internal conductor is "stretched" creating a longer, thinner current path with increasing internal resistance. The "signal voltage" is reduced as a result and the "scale head" - whether "analog" or "digital" - will show the increase in load as an increase in weight. Multiple weigh bars are always required and can be used "between" a load and a "cart" under it to make a "portable scale" or the bars can be used as actual "axles" to support a wheeled or tracked cargo wagon/trailer/cart as well as to measure "tongue weight" so even if part of the load is supported by a "tow vehicle" an accurate measurement and record of cargo loaded onto and/or off of the "mobile scale" is possible. The same type of "weigh bar" can be used to measure horizontal loads and "drawbar pull" of wheeled/tracked or vehicles or "bollard pull" of boats or the "thrust" of jet engines when a proper "test rig" is designed and constructed to provide "frictionless" fore-aft movement of the load relative to the weigh bars. So-called "strain gauges" which are also electrical "load cells" but which have internal mechanical components and/or combine the "scale head" and/or "power supply" into one unit and permit the use of relatively common, inexpensive and easily "serviced" vertical weigh bars and in a horizontal load situation in a "compact" and "cheap" alternative to the "frictionless" multi-cell custom-made "test rig" as well as those used in/on modern crane "lift computers" are often used as and referred to as "load cells" when in fact in every case the actual "load cell" is in and of itself "useless" without a "scale head" and properly engineered, designed and constructed "test rig" which allows it to convert "live loads" and a supply or "reference" voltage to varying output signal voltages as its "strained". Load cells do NOT internally "generate" or otherwise "create" electrical "signals" are no "piezo-electric" devices and do not do anything but deflect and create varying voltage "signals" based upon electrical current supplied to them whether by a "display" or the scale head in actual operation or an analog volt-ohmmeter or digital multimeter when "bench tested" or otherwised demonstrated "operating" but not "in operation".


See also

* Drawbar force gauge *
Dynamometer A dynamometer or "dyno" is a device for simultaneously measuring the torque and rotational speed ( RPM) of an engine, motor or other rotating prime mover so that its instantaneous power may be calculated, and usually displayed by the dyna ...
*
Stretch sensor A stretch sensor is a sensor which can be used to measure deformation and stretching forces such as tension or bending. They are usually made from a material that is itself soft and stretchable. Most stretch sensors fall into one of three categ ...
*
Weighing scale A scale or balance is a device used to measure weight or mass. These are also known as mass scales, weight scales, mass balances, massometers, and weight balances. The traditional scale consists of two plates or bowls suspended at equal d ...


References

{{Reflist Measuring instruments